Cargando…
Embracing the uncertainty in human–machine collaboration to support clinical decision-making for mental health conditions
Two significant obstacles exist preventing the widespread usage of Deep Learning (DL) models for predicting healthcare outcomes in general and mental health conditions in particular. Firstly, DL models do not quantify the uncertainty in their predictions, so clinicians are unsure of which prediction...
Autores principales: | Popat, Ram, Ive, Julia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508184/ https://www.ncbi.nlm.nih.gov/pubmed/37731823 http://dx.doi.org/10.3389/fdgth.2023.1188338 |
Ejemplares similares
-
Leveraging the potential of synthetic text for AI in mental healthcare
por: Ive, Julia
Publicado: (2022) -
Editorial: Machine Learning in Clinical Decision-Making
por: Filiberto, Amanda C., et al.
Publicado: (2021) -
Commentary: Machine learning in clinical decision-making
por: Filiberto, Amanda C., et al.
Publicado: (2023) -
Accessing Artificial Intelligence for Clinical Decision-Making
por: Giordano, Chris, et al.
Publicado: (2021) -
Usability and performance expectancy govern spine surgeons’ use of a clinical decision support system for shared decision-making on the choice of treatment of common lumbar degenerative disorders
por: Eiskjær, Søren, et al.
Publicado: (2023)