Cargando…
Personalizing digital pain management with adapted machine learning approach
INTRODUCTION: Digital therapeutics (DT) emerged and has been expanding rapidly for pain management. However, the efficacy of such approaches demonstrates substantial heterogeneity. Machine learning (ML) approaches provide a great opportunity for personalizing the efficacy of DT. However, the ML mode...
Autores principales: | Fundoiano-Hershcovitz, Yifat, Pollak, Keren, Goldstein, Pavel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508370/ https://www.ncbi.nlm.nih.gov/pubmed/37731749 http://dx.doi.org/10.1097/PR9.0000000000001065 |
Ejemplares similares
-
Artificial intelligence and machine learning in pain research: a data scientometric analysis
por: Lötsch, Jörn, et al.
Publicado: (2022) -
Role of Digital Engagement in Diabetes Care Beyond Measurement: Retrospective Cohort Study
por: Fundoiano-Hershcovitz, Yifat, et al.
Publicado: (2021) -
The effect of psychological factors on pain outcomes: lessons learned for the next generation of research
por: Crombez, Geert, et al.
Publicado: (2023) -
Editorial: Multimodal digital approaches to personalized medicine
por: Clay, Ieuan, et al.
Publicado: (2023) -
The two-stage therapeutic effect of posture biofeedback training on back pain and the associated mechanism: A retrospective cohort study
por: Fundoiano-Hershcovitz, Yifat, et al.
Publicado: (2022)