Cargando…

Network pharmacology and molecular docking predictions of the active compounds and mechanism of action of Huangkui capsule for the treatment of idiopathic membranous nephropathy

BACKGROUND: Huangkui Capsule is a single herbal concoction prepared from the flower of Abelmoschus manihot, which is used to treat idiopathic membranous nephropathy (IMN), a frequent pathologically damaging kidney condition. It has been widely utilized to treat a variety of renal disorders, includin...

Descripción completa

Detalles Bibliográficos
Autores principales: Cai, Meng, Xiang, Yongjing, Li, Zhengsheng, Xie, Juan, Wen, Fulong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Lippincott Williams & Wilkins 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508523/
https://www.ncbi.nlm.nih.gov/pubmed/37713831
http://dx.doi.org/10.1097/MD.0000000000035214
Descripción
Sumario:BACKGROUND: Huangkui Capsule is a single herbal concoction prepared from the flower of Abelmoschus manihot, which is used to treat idiopathic membranous nephropathy (IMN), a frequent pathologically damaging kidney condition. It has been widely utilized to treat a variety of renal disorders, including IMN, in clinical practice. However, the active compounds and mechanism of action underlying the anti-IMN effects of Huangkui Capsule remain unclear. In this study, we aimed to predict the potential active compounds and molecular targets of Huangkui Capsule for the treatment of IMN. METHODS: The possible active components of Huangkui were located using the SymMap v2 database. The targets of these drugs were predicted using Swiss Target Prediction, while IMN-related genes with association scores under 5 were gathered from the GeneCards and DisGeNET databases. The common targets of the disease and the components were determined using VENNY 2.1. Using Cytoscape 3.8.0, a drug-disease network diagram was created. Molecular docking was carried out with Pymol, AutoDock Tools, and AutoDock Vina. RESULTS: With 1260 IMN-related illness genes gathered from GeneCards and DisGeNET databases, we were able to identify 5 potentially active chemicals and their 169 target proteins in Huangkui. Based on degree value, the top 6 targets for Huangkui treatment of IMN were chosen, including AKT, MAPK3, PPARG, MMP9, ESR1, and KDR. CONCLUSION: This work theoretically explains the mechanism of action of Huangkui Capsule in treating IMN and offers a foundation for using Huangkui Capsule in treating IMN in clinical settings. The findings require additional experimental validation.