Cargando…

The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of filtration

Historically, viruses have demonstrated airborne transmission. Emerging evidence suggests the novel coronavirus (SARS-CoV-2) that causes COVID-19 also spreads by airborne transmission. This is more likely in indoor environments, particularly with poor ventilation. In the context of airborne transmis...

Descripción completa

Detalles Bibliográficos
Autores principales: Thornton, Gail M., Fleck, Brian A., Kroeker, Emily, Dandnayak, Dhyey, Fleck, Natalie, Zhong, Lexuan, Hartling, Lisa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508630/
https://www.ncbi.nlm.nih.gov/pubmed/37725631
http://dx.doi.org/10.1371/journal.pgph.0002389
_version_ 1785107580826157056
author Thornton, Gail M.
Fleck, Brian A.
Kroeker, Emily
Dandnayak, Dhyey
Fleck, Natalie
Zhong, Lexuan
Hartling, Lisa
author_facet Thornton, Gail M.
Fleck, Brian A.
Kroeker, Emily
Dandnayak, Dhyey
Fleck, Natalie
Zhong, Lexuan
Hartling, Lisa
author_sort Thornton, Gail M.
collection PubMed
description Historically, viruses have demonstrated airborne transmission. Emerging evidence suggests the novel coronavirus (SARS-CoV-2) that causes COVID-19 also spreads by airborne transmission. This is more likely in indoor environments, particularly with poor ventilation. In the context of airborne transmission, a vital mitigation strategy for the built environment is heating, ventilation, and air conditioning (HVAC) systems. HVAC features could modify virus transmission potential. A systematic review was conducted to identify and synthesize research examining the effectiveness of filters within HVAC systems in reducing virus transmission. A comprehensive search of OVID MEDLINE, Compendex, and Web of Science Core was conducted to January 2021. Two authors were involved in study selection, data extraction, and risk of bias assessments. Study characteristics and results were displayed in evidence tables and findings were synthesized narratively. Twenty-three relevant studies showed that: filtration was associated with decreased transmission; filters removed viruses from the air; increasing filter efficiency (efficiency of particle removal) was associated with decreased transmission, decreased infection risk, and increased viral filtration efficiency (efficiency of virus removal); increasing filter efficiency above MERV 13 was associated with limited benefit in further reduction of virus concentration and infection risk; and filters with the same efficiency rating from different companies showed variable performance. Adapting HVAC systems to mitigate virus transmission requires a multi-factorial approach and filtration is one factor offering demonstrated potential for decreased transmission. For filtration to be effective, proper installation is required. Of note, similarly rated filters from different companies may offer different virus reduction results. While increasing filtration efficiency (i.e., increasing MERV rating or moving from MERV to HEPA) is associated with virus mitigation, there are diminishing returns for filters rated MERV 13 or higher. Although costs increase with filtration efficiency, they are lower than the cost of ventilation options with the equivalent reduction in transmission. Systematic review registration: PROSPERO 2020 CRD42020193968.
format Online
Article
Text
id pubmed-10508630
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-105086302023-09-20 The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of filtration Thornton, Gail M. Fleck, Brian A. Kroeker, Emily Dandnayak, Dhyey Fleck, Natalie Zhong, Lexuan Hartling, Lisa PLOS Glob Public Health Research Article Historically, viruses have demonstrated airborne transmission. Emerging evidence suggests the novel coronavirus (SARS-CoV-2) that causes COVID-19 also spreads by airborne transmission. This is more likely in indoor environments, particularly with poor ventilation. In the context of airborne transmission, a vital mitigation strategy for the built environment is heating, ventilation, and air conditioning (HVAC) systems. HVAC features could modify virus transmission potential. A systematic review was conducted to identify and synthesize research examining the effectiveness of filters within HVAC systems in reducing virus transmission. A comprehensive search of OVID MEDLINE, Compendex, and Web of Science Core was conducted to January 2021. Two authors were involved in study selection, data extraction, and risk of bias assessments. Study characteristics and results were displayed in evidence tables and findings were synthesized narratively. Twenty-three relevant studies showed that: filtration was associated with decreased transmission; filters removed viruses from the air; increasing filter efficiency (efficiency of particle removal) was associated with decreased transmission, decreased infection risk, and increased viral filtration efficiency (efficiency of virus removal); increasing filter efficiency above MERV 13 was associated with limited benefit in further reduction of virus concentration and infection risk; and filters with the same efficiency rating from different companies showed variable performance. Adapting HVAC systems to mitigate virus transmission requires a multi-factorial approach and filtration is one factor offering demonstrated potential for decreased transmission. For filtration to be effective, proper installation is required. Of note, similarly rated filters from different companies may offer different virus reduction results. While increasing filtration efficiency (i.e., increasing MERV rating or moving from MERV to HEPA) is associated with virus mitigation, there are diminishing returns for filters rated MERV 13 or higher. Although costs increase with filtration efficiency, they are lower than the cost of ventilation options with the equivalent reduction in transmission. Systematic review registration: PROSPERO 2020 CRD42020193968. Public Library of Science 2023-09-19 /pmc/articles/PMC10508630/ /pubmed/37725631 http://dx.doi.org/10.1371/journal.pgph.0002389 Text en © 2023 Thornton et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Thornton, Gail M.
Fleck, Brian A.
Kroeker, Emily
Dandnayak, Dhyey
Fleck, Natalie
Zhong, Lexuan
Hartling, Lisa
The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of filtration
title The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of filtration
title_full The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of filtration
title_fullStr The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of filtration
title_full_unstemmed The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of filtration
title_short The impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: A systematic review of filtration
title_sort impact of heating, ventilation, and air conditioning design features on the transmission of viruses, including the 2019 novel coronavirus: a systematic review of filtration
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508630/
https://www.ncbi.nlm.nih.gov/pubmed/37725631
http://dx.doi.org/10.1371/journal.pgph.0002389
work_keys_str_mv AT thorntongailm theimpactofheatingventilationandairconditioningdesignfeaturesonthetransmissionofvirusesincludingthe2019novelcoronavirusasystematicreviewoffiltration
AT fleckbriana theimpactofheatingventilationandairconditioningdesignfeaturesonthetransmissionofvirusesincludingthe2019novelcoronavirusasystematicreviewoffiltration
AT kroekeremily theimpactofheatingventilationandairconditioningdesignfeaturesonthetransmissionofvirusesincludingthe2019novelcoronavirusasystematicreviewoffiltration
AT dandnayakdhyey theimpactofheatingventilationandairconditioningdesignfeaturesonthetransmissionofvirusesincludingthe2019novelcoronavirusasystematicreviewoffiltration
AT flecknatalie theimpactofheatingventilationandairconditioningdesignfeaturesonthetransmissionofvirusesincludingthe2019novelcoronavirusasystematicreviewoffiltration
AT zhonglexuan theimpactofheatingventilationandairconditioningdesignfeaturesonthetransmissionofvirusesincludingthe2019novelcoronavirusasystematicreviewoffiltration
AT hartlinglisa theimpactofheatingventilationandairconditioningdesignfeaturesonthetransmissionofvirusesincludingthe2019novelcoronavirusasystematicreviewoffiltration
AT thorntongailm impactofheatingventilationandairconditioningdesignfeaturesonthetransmissionofvirusesincludingthe2019novelcoronavirusasystematicreviewoffiltration
AT fleckbriana impactofheatingventilationandairconditioningdesignfeaturesonthetransmissionofvirusesincludingthe2019novelcoronavirusasystematicreviewoffiltration
AT kroekeremily impactofheatingventilationandairconditioningdesignfeaturesonthetransmissionofvirusesincludingthe2019novelcoronavirusasystematicreviewoffiltration
AT dandnayakdhyey impactofheatingventilationandairconditioningdesignfeaturesonthetransmissionofvirusesincludingthe2019novelcoronavirusasystematicreviewoffiltration
AT flecknatalie impactofheatingventilationandairconditioningdesignfeaturesonthetransmissionofvirusesincludingthe2019novelcoronavirusasystematicreviewoffiltration
AT zhonglexuan impactofheatingventilationandairconditioningdesignfeaturesonthetransmissionofvirusesincludingthe2019novelcoronavirusasystematicreviewoffiltration
AT hartlinglisa impactofheatingventilationandairconditioningdesignfeaturesonthetransmissionofvirusesincludingthe2019novelcoronavirusasystematicreviewoffiltration