Cargando…
Predicting the target landscape of kinase inhibitors using 3D convolutional neural networks
Many therapies in clinical trials are based on single drug-single target relationships. To further extend this concept to multi-target approaches using multi-targeted drugs, we developed a machine learning pipeline to unravel the target landscape of kinase inhibitors. This pipeline, which we call 3D...
Autores principales: | Kanev, Georgi K., Zhang, Yaran, Kooistra, Albert J., Bender, Andreas, Leurs, Rob, Bailey, David, Würdinger, Thomas, de Graaf, Chris, de Esch, Iwan J. P., Westerman, Bart A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508635/ https://www.ncbi.nlm.nih.gov/pubmed/37669273 http://dx.doi.org/10.1371/journal.pcbi.1011301 |
Ejemplares similares
-
KLIFS: an overhaul after the first 5 years of supporting kinase research
por: Kanev, Georgi K, et al.
Publicado: (2020) -
KLIFS: a structural kinase-ligand interaction database
por: Kooistra, Albert J., et al.
Publicado: (2016) -
Function-specific virtual screening for GPCR ligands using a combined scoring method
por: Kooistra, Albert J., et al.
Publicado: (2016) -
3D‐e‐Chem: Structural Cheminformatics Workflows for Computer‐Aided Drug Discovery
por: Kooistra, Albert J., et al.
Publicado: (2018) -
3D-e-Chem-VM: Structural Cheminformatics Research
Infrastructure in a Freely Available Virtual Machine
por: McGuire, Ross, et al.
Publicado: (2017)