Cargando…
Accurate single-molecule spot detection for image-based spatial transcriptomics with weakly supervised deep learning
Image-based spatial transcriptomics methods enable transcriptome-scale gene expression measurements with spatial information but require complex, manually-tuned analysis pipelines. We present Polaris, an analysis pipeline for image-based spatial transcriptomics that combines deep learning models for...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508757/ https://www.ncbi.nlm.nih.gov/pubmed/37732188 http://dx.doi.org/10.1101/2023.09.03.556122 |
Sumario: | Image-based spatial transcriptomics methods enable transcriptome-scale gene expression measurements with spatial information but require complex, manually-tuned analysis pipelines. We present Polaris, an analysis pipeline for image-based spatial transcriptomics that combines deep learning models for cell segmentation and spot detection with a probabilistic gene decoder to quantify single-cell gene expression accurately. Polaris offers a unifying, turnkey solution for analyzing spatial transcriptomics data from MERFSIH, seqFISH, or ISS experiments. Polaris is available through the DeepCell software library (https://github.com/vanvalenlab/deepcell-spots) and https://www.deepcell.org. |
---|