Cargando…
Poor Generalization by Current Deep Learning Models for Predicting Binding Affinities of Kinase Inhibitors
The extreme surge of interest over the past decade surrounding the use of neural networks has inspired many groups to deploy them for predicting binding affinities of drug-like molecules to their receptors. A model that can accurately make such predictions has the potential to screen large chemical...
Autores principales: | Ong, Wern Juin Gabriel, Kirubakaran, Palani, Karanicolas, John |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508770/ https://www.ncbi.nlm.nih.gov/pubmed/37732243 http://dx.doi.org/10.1101/2023.09.04.556234 |
Ejemplares similares
-
Prediction of kinase-inhibitor binding affinity using energetic parameters
por: Usha, Singaravelu, et al.
Publicado: (2016) -
Isothermal Analysis of ThermoFluor Data can readily provide Quantitative Binding Affinities
por: Bai, Nan, et al.
Publicado: (2019) -
Three-Dimensional-QSAR and Relative Binding Affinity Estimation of Focal Adhesion Kinase Inhibitors
por: Ghosh, Suparna, et al.
Publicado: (2023) -
DEELIG: A Deep Learning Approach to Predict Protein-Ligand Binding Affinity
por: Ahmed, Asad, et al.
Publicado: (2021) -
DeepDTA: deep drug–target binding affinity prediction
por: Öztürk, Hakime, et al.
Publicado: (2018)