Cargando…
Human Learning of Hierarchical Graphs
Humans are constantly exposed to sequences of events in the environment. Those sequences frequently evince statistical regularities, such as the probabilities with which one event transitions to another. Collectively, inter-event transition probabilities can be modeled as a graph or network. Many re...
Autores principales: | Xia, Xiaohuan, Klishin, Andrei A., Stiso, Jennifer, Lynn, Christopher W., Kahn, Ari E., Caciagli, Lorenzo, Bassett, Dani S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cornell University
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508785/ https://www.ncbi.nlm.nih.gov/pubmed/37731654 |
Ejemplares similares
-
Optimizing the human learnability of abstract network representations
por: Qian, William, et al.
Publicado: (2022) -
Neurophysiological Evidence for Cognitive Map Formation during Sequence Learning
por: Stiso, Jennifer, et al.
Publicado: (2022) -
Uncovering the biological basis of control energy: Structural and metabolic correlates of energy inefficiency in temporal lobe epilepsy
por: He, Xiaosong, et al.
Publicado: (2022) -
Abstract representations of events arise from mental errors in learning and memory
por: Lynn, Christopher W., et al.
Publicado: (2020) -
DotMotif: an open-source tool for connectome subgraph isomorphism search and graph queries
por: Matelsky, Jordan K., et al.
Publicado: (2021)