Cargando…

Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine

OBJECTIVE: The study aimed to develop and validate algorithms for identifying people with type 1 and type 2 diabetes in the All of Us Research Program (AoU) cohort, using electronic health record (EHR) and survey data. RESEARCH DESIGN AND METHODS: Two sets of algorithms were developed, one using onl...

Descripción completa

Detalles Bibliográficos
Autores principales: Szczerbinski, Lukasz, Mandla, Ravi, Schroeder, Philip, Porneala, Bianca C., Li, Josephine H., Florez, Jose C., Mercader, Josep M., Manning, Alisa K., Udler, Miriam S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508798/
https://www.ncbi.nlm.nih.gov/pubmed/37732265
http://dx.doi.org/10.1101/2023.09.05.23295061
_version_ 1785107611047165952
author Szczerbinski, Lukasz
Mandla, Ravi
Schroeder, Philip
Porneala, Bianca C.
Li, Josephine H.
Florez, Jose C.
Mercader, Josep M.
Manning, Alisa K.
Udler, Miriam S.
author_facet Szczerbinski, Lukasz
Mandla, Ravi
Schroeder, Philip
Porneala, Bianca C.
Li, Josephine H.
Florez, Jose C.
Mercader, Josep M.
Manning, Alisa K.
Udler, Miriam S.
author_sort Szczerbinski, Lukasz
collection PubMed
description OBJECTIVE: The study aimed to develop and validate algorithms for identifying people with type 1 and type 2 diabetes in the All of Us Research Program (AoU) cohort, using electronic health record (EHR) and survey data. RESEARCH DESIGN AND METHODS: Two sets of algorithms were developed, one using only EHR data (EHR), and the other using a combination of EHR and survey data (EHR+). Their performance was evaluated by testing their association with polygenic scores for both type 1 and type 2 diabetes. RESULTS: For type 1 diabetes, the EHR-only algorithm showed a stronger association with T1D polygenic score (p=3×10(−5)) than the EHR+. For type 2 diabetes, the EHR+ algorithm outperformed both the EHR-only and the existing AoU definition, identifying additional cases (25.79% and 22.57% more, respectively) and showing stronger association with T2D polygenic score (DeLong p=0.03 and 1×10(−4), respectively). CONCLUSIONS: We provide new validated definitions of type 1 and type 2 diabetes in AoU, and make them available for researchers. These algorithms, by ensuring consistent diabetes definitions, pave the way for high-quality diabetes research and future clinical discoveries.
format Online
Article
Text
id pubmed-10508798
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Cold Spring Harbor Laboratory
record_format MEDLINE/PubMed
spelling pubmed-105087982023-09-20 Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine Szczerbinski, Lukasz Mandla, Ravi Schroeder, Philip Porneala, Bianca C. Li, Josephine H. Florez, Jose C. Mercader, Josep M. Manning, Alisa K. Udler, Miriam S. medRxiv Article OBJECTIVE: The study aimed to develop and validate algorithms for identifying people with type 1 and type 2 diabetes in the All of Us Research Program (AoU) cohort, using electronic health record (EHR) and survey data. RESEARCH DESIGN AND METHODS: Two sets of algorithms were developed, one using only EHR data (EHR), and the other using a combination of EHR and survey data (EHR+). Their performance was evaluated by testing their association with polygenic scores for both type 1 and type 2 diabetes. RESULTS: For type 1 diabetes, the EHR-only algorithm showed a stronger association with T1D polygenic score (p=3×10(−5)) than the EHR+. For type 2 diabetes, the EHR+ algorithm outperformed both the EHR-only and the existing AoU definition, identifying additional cases (25.79% and 22.57% more, respectively) and showing stronger association with T2D polygenic score (DeLong p=0.03 and 1×10(−4), respectively). CONCLUSIONS: We provide new validated definitions of type 1 and type 2 diabetes in AoU, and make them available for researchers. These algorithms, by ensuring consistent diabetes definitions, pave the way for high-quality diabetes research and future clinical discoveries. Cold Spring Harbor Laboratory 2023-09-05 /pmc/articles/PMC10508798/ /pubmed/37732265 http://dx.doi.org/10.1101/2023.09.05.23295061 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator.
spellingShingle Article
Szczerbinski, Lukasz
Mandla, Ravi
Schroeder, Philip
Porneala, Bianca C.
Li, Josephine H.
Florez, Jose C.
Mercader, Josep M.
Manning, Alisa K.
Udler, Miriam S.
Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine
title Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine
title_full Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine
title_fullStr Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine
title_full_unstemmed Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine
title_short Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine
title_sort algorithms for the identification of prevalent diabetes in the all of us research program validated using polygenic scores – a new resource for diabetes precision medicine
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508798/
https://www.ncbi.nlm.nih.gov/pubmed/37732265
http://dx.doi.org/10.1101/2023.09.05.23295061
work_keys_str_mv AT szczerbinskilukasz algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine
AT mandlaravi algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine
AT schroederphilip algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine
AT pornealabiancac algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine
AT lijosephineh algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine
AT florezjosec algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine
AT mercaderjosepm algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine
AT manningalisak algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine
AT udlermiriams algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine