Cargando…
Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine
OBJECTIVE: The study aimed to develop and validate algorithms for identifying people with type 1 and type 2 diabetes in the All of Us Research Program (AoU) cohort, using electronic health record (EHR) and survey data. RESEARCH DESIGN AND METHODS: Two sets of algorithms were developed, one using onl...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508798/ https://www.ncbi.nlm.nih.gov/pubmed/37732265 http://dx.doi.org/10.1101/2023.09.05.23295061 |
_version_ | 1785107611047165952 |
---|---|
author | Szczerbinski, Lukasz Mandla, Ravi Schroeder, Philip Porneala, Bianca C. Li, Josephine H. Florez, Jose C. Mercader, Josep M. Manning, Alisa K. Udler, Miriam S. |
author_facet | Szczerbinski, Lukasz Mandla, Ravi Schroeder, Philip Porneala, Bianca C. Li, Josephine H. Florez, Jose C. Mercader, Josep M. Manning, Alisa K. Udler, Miriam S. |
author_sort | Szczerbinski, Lukasz |
collection | PubMed |
description | OBJECTIVE: The study aimed to develop and validate algorithms for identifying people with type 1 and type 2 diabetes in the All of Us Research Program (AoU) cohort, using electronic health record (EHR) and survey data. RESEARCH DESIGN AND METHODS: Two sets of algorithms were developed, one using only EHR data (EHR), and the other using a combination of EHR and survey data (EHR+). Their performance was evaluated by testing their association with polygenic scores for both type 1 and type 2 diabetes. RESULTS: For type 1 diabetes, the EHR-only algorithm showed a stronger association with T1D polygenic score (p=3×10(−5)) than the EHR+. For type 2 diabetes, the EHR+ algorithm outperformed both the EHR-only and the existing AoU definition, identifying additional cases (25.79% and 22.57% more, respectively) and showing stronger association with T2D polygenic score (DeLong p=0.03 and 1×10(−4), respectively). CONCLUSIONS: We provide new validated definitions of type 1 and type 2 diabetes in AoU, and make them available for researchers. These algorithms, by ensuring consistent diabetes definitions, pave the way for high-quality diabetes research and future clinical discoveries. |
format | Online Article Text |
id | pubmed-10508798 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Cold Spring Harbor Laboratory |
record_format | MEDLINE/PubMed |
spelling | pubmed-105087982023-09-20 Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine Szczerbinski, Lukasz Mandla, Ravi Schroeder, Philip Porneala, Bianca C. Li, Josephine H. Florez, Jose C. Mercader, Josep M. Manning, Alisa K. Udler, Miriam S. medRxiv Article OBJECTIVE: The study aimed to develop and validate algorithms for identifying people with type 1 and type 2 diabetes in the All of Us Research Program (AoU) cohort, using electronic health record (EHR) and survey data. RESEARCH DESIGN AND METHODS: Two sets of algorithms were developed, one using only EHR data (EHR), and the other using a combination of EHR and survey data (EHR+). Their performance was evaluated by testing their association with polygenic scores for both type 1 and type 2 diabetes. RESULTS: For type 1 diabetes, the EHR-only algorithm showed a stronger association with T1D polygenic score (p=3×10(−5)) than the EHR+. For type 2 diabetes, the EHR+ algorithm outperformed both the EHR-only and the existing AoU definition, identifying additional cases (25.79% and 22.57% more, respectively) and showing stronger association with T2D polygenic score (DeLong p=0.03 and 1×10(−4), respectively). CONCLUSIONS: We provide new validated definitions of type 1 and type 2 diabetes in AoU, and make them available for researchers. These algorithms, by ensuring consistent diabetes definitions, pave the way for high-quality diabetes research and future clinical discoveries. Cold Spring Harbor Laboratory 2023-09-05 /pmc/articles/PMC10508798/ /pubmed/37732265 http://dx.doi.org/10.1101/2023.09.05.23295061 Text en https://creativecommons.org/licenses/by-nc/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (https://creativecommons.org/licenses/by-nc/4.0/) , which allows reusers to distribute, remix, adapt, and build upon the material in any medium or format for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Article Szczerbinski, Lukasz Mandla, Ravi Schroeder, Philip Porneala, Bianca C. Li, Josephine H. Florez, Jose C. Mercader, Josep M. Manning, Alisa K. Udler, Miriam S. Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine |
title | Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine |
title_full | Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine |
title_fullStr | Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine |
title_full_unstemmed | Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine |
title_short | Algorithms for the identification of prevalent diabetes in the All of Us Research Program validated using polygenic scores – a new resource for diabetes precision medicine |
title_sort | algorithms for the identification of prevalent diabetes in the all of us research program validated using polygenic scores – a new resource for diabetes precision medicine |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508798/ https://www.ncbi.nlm.nih.gov/pubmed/37732265 http://dx.doi.org/10.1101/2023.09.05.23295061 |
work_keys_str_mv | AT szczerbinskilukasz algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine AT mandlaravi algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine AT schroederphilip algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine AT pornealabiancac algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine AT lijosephineh algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine AT florezjosec algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine AT mercaderjosepm algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine AT manningalisak algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine AT udlermiriams algorithmsfortheidentificationofprevalentdiabetesintheallofusresearchprogramvalidatedusingpolygenicscoresanewresourcefordiabetesprecisionmedicine |