Cargando…
Foundation Models for Quantitative Biomarker Discovery in Cancer Imaging
Foundation models represent a recent paradigm shift in deep learning, where a single large-scale model trained on vast amounts of data can serve as the foundation for various downstream tasks. Foundation models are generally trained using self-supervised learning and excel in reducing the demand for...
Autores principales: | Pai, Suraj, Bontempi, Dennis, Prudente, Vasco, Hadzic, Ibrahim, Sokač, Mateo, Chaunzwa, Tafadzwa L., Bernatz, Simon, Hosny, Ahmed, Mak, Raymond H, Birkbak, Nicolai J, Aerts, Hugo JWL |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508804/ https://www.ncbi.nlm.nih.gov/pubmed/37732237 http://dx.doi.org/10.1101/2023.09.04.23294952 |
Ejemplares similares
-
Spatial transformation of multi-omics data unlocks novel insights into cancer biology
por: Sokač, Mateo, et al.
Publicado: (2023) -
Decoding biological age from face photographs using deep learning
por: Zalay, Osbert, et al.
Publicado: (2023) -
Deep learning classification of lung cancer histology using CT images
por: Chaunzwa, Tafadzwa L., et al.
Publicado: (2021) -
Deep learning to estimate lung disease mortality from chest radiographs
por: Weiss, Jakob, et al.
Publicado: (2023) -
The ratio of adaptive to innate immune cells differs between genders and associates with improved prognosis and response to immunotherapy
por: Ahrenfeldt, Johanne, et al.
Publicado: (2023)