Cargando…
Deep Learning Model for Tumor Type Prediction using Targeted Clinical Genomic Sequencing Data
Tumor type guides clinical treatment decisions in cancer, but histology-based diagnosis remains challenging. Genomic alterations are highly diagnostic of tumor type, and tumor type classifiers trained on genomic features have been explored, but the most accurate methods are not clinically feasible,...
Autores principales: | Darmofal, Madison, Suman, Shalabh, Atwal, Gurnit, Chen, Jie-Fu, Chang, Jason C., Toomey, Michael, Vakiani, Efsevia, Varghese, Anna M, Rema, Anoop Balakrishnan, Syed, Aijazuddin, Schultz, Nikolaus, Berger, Michael, Morris, Quaid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cold Spring Harbor Laboratory
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508812/ https://www.ncbi.nlm.nih.gov/pubmed/37732244 http://dx.doi.org/10.1101/2023.09.08.23295131 |
Ejemplares similares
-
A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
por: Jiao, Wei, et al.
Publicado: (2020) -
Author Correction: A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
por: Jiao, Wei, et al.
Publicado: (2022) -
Targeted next-generation sequencing of colorectal cancer identified metastatic specific genetic alterations
por: Brannon, A Rose, et al.
Publicado: (2012) -
Java GUI for InterProScan (JIPS): A tool to help process multiple InterProScans and perform ortholog analysis
por: Syed, Aijazuddin, et al.
Publicado: (2006) -
Phase II Trial of Sorafenib in Patients with Chemotherapy Refractory Metastatic Esophageal and Gastroesophageal (GE) Junction Cancer
por: Janjigian, Yelena Y., et al.
Publicado: (2015)