Cargando…
Clinical evaluation on automatic segmentation results of convolutional neural networks in rectal cancer radiotherapy
PURPOSE: Image segmentation can be time-consuming and lacks consistency between different oncologists, which is essential in conformal radiotherapy techniques. We aimed to evaluate automatic delineation results generated by convolutional neural networks (CNNs) from geometry and dosimetry perspective...
Autores principales: | Li, Jing, Song, Ying, Wu, Yongchang, Liang, Lan, Li, Guangjun, Bai, Sen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10508953/ https://www.ncbi.nlm.nih.gov/pubmed/37731629 http://dx.doi.org/10.3389/fonc.2023.1158315 |
Ejemplares similares
-
Automatic Segmentation of Clinical Target Volumes for Post-Modified Radical Mastectomy Radiotherapy Using Convolutional Neural Networks
por: Liu, Zhikai, et al.
Publicado: (2021) -
Convolutional neural network based on automatic segmentation of peritumoral shear-wave elastography images for predicting breast cancer
por: Xie, Li, et al.
Publicado: (2023) -
A study of positioning orientation effect on segmentation accuracy using convolutional neural networks for rectal cancer
por: Men, Kuo, et al.
Publicado: (2018) -
Adaptive Attention Convolutional Neural Network for Liver Tumor Segmentation
por: Luan, Shunyao, et al.
Publicado: (2021) -
Automatic Pancreatic Ductal Adenocarcinoma Detection in Whole Slide Images Using Deep Convolutional Neural Networks
por: Fu, Hao, et al.
Publicado: (2021)