Cargando…
Automatic identification of posteroanterior cephalometric landmarks using a novel deep learning algorithm: a comparative study with human experts
This study aimed to propose a fully automatic posteroanterior (PA) cephalometric landmark identification model using deep learning algorithms and compare its accuracy and reliability with those of expert human examiners. In total, 1032 PA cephalometric images were used for model training and validat...
Autores principales: | Lee, Hwangyu, Cho, Jung Min, Ryu, Susie, Ryu, Seungmin, Chang, Euijune, Jung, Young-Soo, Kim, Jun-Young |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509166/ https://www.ncbi.nlm.nih.gov/pubmed/37726392 http://dx.doi.org/10.1038/s41598-023-42870-z |
Ejemplares similares
-
A fully deep learning model for the automatic identification of cephalometric landmarks
por: Kim, Young Hyun, et al.
Publicado: (2021) -
Is automatic cephalometric software using artificial intelligence better than orthodontist experts in landmark identification?
por: Ye, Huayu, et al.
Publicado: (2023) -
Benefits of lateral cephalogram during landmark identification on posteroanterior cephalograms
por: Hwang, Sel-Ae, et al.
Publicado: (2019) -
Evaluation of a multi-stage convolutional neural network-based fully automated landmark identification system using cone-beam computed tomography-synthesized posteroanterior cephalometric images
por: Kim, Min-Jung, et al.
Publicado: (2021) -
An Evaluation of Cellular Neural Networks for the Automatic Identification of Cephalometric Landmarks on Digital Images
por: Leonardi, Rosalia, et al.
Publicado: (2009)