Cargando…
A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling
Metabolic stable isotope labeling with heavy water followed by liquid chromatography coupled with mass spectrometry (LC-MS) is a powerful tool for in vivo protein turnover studies. Several algorithms and tools have been developed to determine the turnover rates of peptides and proteins from time-cou...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509199/ https://www.ncbi.nlm.nih.gov/pubmed/37726365 http://dx.doi.org/10.1038/s41597-023-02537-w |
_version_ | 1785107691222335488 |
---|---|
author | Deberneh, Henock M. Abdelrahman, Doaa R. Verma, Sunil K. Linares, Jennifer J. Murton, Andrew J. Russell, William K. Kuyumcu-Martinez, Muge N. Miller, Benjamin F. Sadygov, Rovshan G. |
author_facet | Deberneh, Henock M. Abdelrahman, Doaa R. Verma, Sunil K. Linares, Jennifer J. Murton, Andrew J. Russell, William K. Kuyumcu-Martinez, Muge N. Miller, Benjamin F. Sadygov, Rovshan G. |
author_sort | Deberneh, Henock M. |
collection | PubMed |
description | Metabolic stable isotope labeling with heavy water followed by liquid chromatography coupled with mass spectrometry (LC-MS) is a powerful tool for in vivo protein turnover studies. Several algorithms and tools have been developed to determine the turnover rates of peptides and proteins from time-course stable isotope labeling experiments. The availability of benchmark mass spectrometry data is crucial to compare and validate the effectiveness of newly developed techniques and algorithms. In this work, we report a heavy water-labeled LC-MS dataset from the murine liver for protein turnover rate analysis. The dataset contains eighteen mass spectral data with their corresponding database search results from nine different labeling durations and quantification outputs from d2ome+ software. The dataset also contains eight mass spectral data from two-dimensional fractionation experiments on unlabeled samples. |
format | Online Article Text |
id | pubmed-10509199 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-105091992023-09-21 A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling Deberneh, Henock M. Abdelrahman, Doaa R. Verma, Sunil K. Linares, Jennifer J. Murton, Andrew J. Russell, William K. Kuyumcu-Martinez, Muge N. Miller, Benjamin F. Sadygov, Rovshan G. Sci Data Data Descriptor Metabolic stable isotope labeling with heavy water followed by liquid chromatography coupled with mass spectrometry (LC-MS) is a powerful tool for in vivo protein turnover studies. Several algorithms and tools have been developed to determine the turnover rates of peptides and proteins from time-course stable isotope labeling experiments. The availability of benchmark mass spectrometry data is crucial to compare and validate the effectiveness of newly developed techniques and algorithms. In this work, we report a heavy water-labeled LC-MS dataset from the murine liver for protein turnover rate analysis. The dataset contains eighteen mass spectral data with their corresponding database search results from nine different labeling durations and quantification outputs from d2ome+ software. The dataset also contains eight mass spectral data from two-dimensional fractionation experiments on unlabeled samples. Nature Publishing Group UK 2023-09-19 /pmc/articles/PMC10509199/ /pubmed/37726365 http://dx.doi.org/10.1038/s41597-023-02537-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Data Descriptor Deberneh, Henock M. Abdelrahman, Doaa R. Verma, Sunil K. Linares, Jennifer J. Murton, Andrew J. Russell, William K. Kuyumcu-Martinez, Muge N. Miller, Benjamin F. Sadygov, Rovshan G. A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling |
title | A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling |
title_full | A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling |
title_fullStr | A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling |
title_full_unstemmed | A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling |
title_short | A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling |
title_sort | large-scale lc-ms dataset of murine liver proteome from time course of heavy water metabolic labeling |
topic | Data Descriptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509199/ https://www.ncbi.nlm.nih.gov/pubmed/37726365 http://dx.doi.org/10.1038/s41597-023-02537-w |
work_keys_str_mv | AT debernehhenockm alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT abdelrahmandoaar alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT vermasunilk alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT linaresjenniferj alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT murtonandrewj alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT russellwilliamk alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT kuyumcumartinezmugen alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT millerbenjaminf alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT sadygovrovshang alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT debernehhenockm largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT abdelrahmandoaar largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT vermasunilk largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT linaresjenniferj largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT murtonandrewj largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT russellwilliamk largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT kuyumcumartinezmugen largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT millerbenjaminf largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling AT sadygovrovshang largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling |