Cargando…

A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling

Metabolic stable isotope labeling with heavy water followed by liquid chromatography coupled with mass spectrometry (LC-MS) is a powerful tool for in vivo protein turnover studies. Several algorithms and tools have been developed to determine the turnover rates of peptides and proteins from time-cou...

Descripción completa

Detalles Bibliográficos
Autores principales: Deberneh, Henock M., Abdelrahman, Doaa R., Verma, Sunil K., Linares, Jennifer J., Murton, Andrew J., Russell, William K., Kuyumcu-Martinez, Muge N., Miller, Benjamin F., Sadygov, Rovshan G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509199/
https://www.ncbi.nlm.nih.gov/pubmed/37726365
http://dx.doi.org/10.1038/s41597-023-02537-w
_version_ 1785107691222335488
author Deberneh, Henock M.
Abdelrahman, Doaa R.
Verma, Sunil K.
Linares, Jennifer J.
Murton, Andrew J.
Russell, William K.
Kuyumcu-Martinez, Muge N.
Miller, Benjamin F.
Sadygov, Rovshan G.
author_facet Deberneh, Henock M.
Abdelrahman, Doaa R.
Verma, Sunil K.
Linares, Jennifer J.
Murton, Andrew J.
Russell, William K.
Kuyumcu-Martinez, Muge N.
Miller, Benjamin F.
Sadygov, Rovshan G.
author_sort Deberneh, Henock M.
collection PubMed
description Metabolic stable isotope labeling with heavy water followed by liquid chromatography coupled with mass spectrometry (LC-MS) is a powerful tool for in vivo protein turnover studies. Several algorithms and tools have been developed to determine the turnover rates of peptides and proteins from time-course stable isotope labeling experiments. The availability of benchmark mass spectrometry data is crucial to compare and validate the effectiveness of newly developed techniques and algorithms. In this work, we report a heavy water-labeled LC-MS dataset from the murine liver for protein turnover rate analysis. The dataset contains eighteen mass spectral data with their corresponding database search results from nine different labeling durations and quantification outputs from d2ome+ software. The dataset also contains eight mass spectral data from two-dimensional fractionation experiments on unlabeled samples.
format Online
Article
Text
id pubmed-10509199
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105091992023-09-21 A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling Deberneh, Henock M. Abdelrahman, Doaa R. Verma, Sunil K. Linares, Jennifer J. Murton, Andrew J. Russell, William K. Kuyumcu-Martinez, Muge N. Miller, Benjamin F. Sadygov, Rovshan G. Sci Data Data Descriptor Metabolic stable isotope labeling with heavy water followed by liquid chromatography coupled with mass spectrometry (LC-MS) is a powerful tool for in vivo protein turnover studies. Several algorithms and tools have been developed to determine the turnover rates of peptides and proteins from time-course stable isotope labeling experiments. The availability of benchmark mass spectrometry data is crucial to compare and validate the effectiveness of newly developed techniques and algorithms. In this work, we report a heavy water-labeled LC-MS dataset from the murine liver for protein turnover rate analysis. The dataset contains eighteen mass spectral data with their corresponding database search results from nine different labeling durations and quantification outputs from d2ome+ software. The dataset also contains eight mass spectral data from two-dimensional fractionation experiments on unlabeled samples. Nature Publishing Group UK 2023-09-19 /pmc/articles/PMC10509199/ /pubmed/37726365 http://dx.doi.org/10.1038/s41597-023-02537-w Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Data Descriptor
Deberneh, Henock M.
Abdelrahman, Doaa R.
Verma, Sunil K.
Linares, Jennifer J.
Murton, Andrew J.
Russell, William K.
Kuyumcu-Martinez, Muge N.
Miller, Benjamin F.
Sadygov, Rovshan G.
A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling
title A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling
title_full A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling
title_fullStr A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling
title_full_unstemmed A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling
title_short A large-scale LC-MS dataset of murine liver proteome from time course of heavy water metabolic labeling
title_sort large-scale lc-ms dataset of murine liver proteome from time course of heavy water metabolic labeling
topic Data Descriptor
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509199/
https://www.ncbi.nlm.nih.gov/pubmed/37726365
http://dx.doi.org/10.1038/s41597-023-02537-w
work_keys_str_mv AT debernehhenockm alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT abdelrahmandoaar alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT vermasunilk alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT linaresjenniferj alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT murtonandrewj alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT russellwilliamk alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT kuyumcumartinezmugen alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT millerbenjaminf alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT sadygovrovshang alargescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT debernehhenockm largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT abdelrahmandoaar largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT vermasunilk largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT linaresjenniferj largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT murtonandrewj largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT russellwilliamk largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT kuyumcumartinezmugen largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT millerbenjaminf largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling
AT sadygovrovshang largescalelcmsdatasetofmurineliverproteomefromtimecourseofheavywatermetaboliclabeling