Cargando…

Significance of heat transfer rate in water-based nanoparticles with magnetic and shape factors effects: Tiwari and Das model

Nanofluids are implementable in a variety of applications, such as heat exchangers, the healthcare sector, the cooling of various devices, hybrid-powered machines, microelectronics, power plants, chemical processes, astronomical technology, cancer treatment, etc. Nanofluids also have enhanced heat t...

Descripción completa

Detalles Bibliográficos
Autores principales: Asif Ali Shah, Syed, Kanwal, Shumaila, Idrees, Muhammad, Mahmood, Asif, Mahmood, Irfan, Akgul, Ali, Bariq, Abdul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509210/
https://www.ncbi.nlm.nih.gov/pubmed/37726369
http://dx.doi.org/10.1038/s41598-023-42480-9
Descripción
Sumario:Nanofluids are implementable in a variety of applications, such as heat exchangers, the healthcare sector, the cooling of various devices, hybrid-powered machines, microelectronics, power plants, chemical processes, astronomical technology, cancer treatment, etc. Nanofluids also have enhanced heat transmission and thermal efficiency. The heat radiation of nanoparticles and the natural-convective flow of electrically conducting nanofluids over the rotating disk using Darcy Forchheimer’s porous media, thermal radiation is investigated in this paper. The nanoparticles titanium dioxide and single-walled carbon nanotubes are taken into account with base fluid water. The main goal of this investigation is to enhance heat transfer in nanofluids. The mathematical solution for the model has been obtained through the utilization of cylindrical coordinates. The flow model, which forms the basis of the investigation, is constructed around partial differential equations (PDEs). To address the inherent nonlinearity of these PDEs, physical similarities are employed to transform them into ordinary differential equations (ODEs). Subsequently, the fourth-order Runge–Kutta technique is employed via Matlab to solve these ODEs. The graphical examination of the velocities and temperature with various parameters is an exquisite display of scientific artistry. The magnetic field component is anticipated to exhibit an inverse correlation with velocities, while the temperature profile is expected to surge with the rise of the nonlinear mixed convection parameter. Additionally, the skin friction and Nusselt number are meticulously computed and presented in a tabular format, adding a touch of elegance to the already breathtaking analysis. By boosting the radiation parameter, the Nusselt value declined. Moreover, it is observed that the nanofluids having a laminar nanoparticle shape have a greater heat transfer rate.