Cargando…
Adaptive physics-informed neural operator for coarse-grained non-equilibrium flows
This work proposes a new machine learning (ML)-based paradigm aiming to enhance the computational efficiency of non-equilibrium reacting flow simulations while ensuring compliance with the underlying physics. The framework combines dimensionality reduction and neural operators through a hierarchical...
Autores principales: | Zanardi, Ivan, Venturi, Simone, Panesi, Marco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509218/ https://www.ncbi.nlm.nih.gov/pubmed/37726349 http://dx.doi.org/10.1038/s41598-023-41039-y |
Ejemplares similares
Cargando…
Coarse-Grained Prediction of RNA Loop Structures
por: Liu, Liang, et al.
Publicado: (2012)
por: Liu, Liang, et al.
Publicado: (2012)
Cargando…
Coarse-graining as a downward causation mechanism
por: Flack, Jessica C.
Publicado: (2017)
por: Flack, Jessica C.
Publicado: (2017)
Ejemplares similares
-
Coarse Grained Modeling of Multiphase Flows with Surfactants
por: Nguyen, Thao X. D., et al.
Publicado: (2022) -
Coarse-graining of the dynamics seen in neural networks
por: Ben-Tal, Alona, et al.
Publicado: (2013) -
Flow of the coarse grained free energy for crossover phenomena
por: Bornholdt, S., et al.
Publicado: (1996) -
Variational approach to coarse-graining of generalized gradient flows
por: Duong, Manh Hong, et al.
Publicado: (2017) -
Coarse-grained statistics for attributing criticality to heterogeneous neural networks
por: Corcoran, Thomas Gregory, et al.
Publicado: (2011)