Cargando…

Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution

Spatial transcriptomics of histological sections have revolutionized research in life sciences and enabled unprecedented insights into genetic processes involved in tissue reorganization. However, in contrast to genomic analysis, the actual biomolecular composition of the sample has fallen behind, l...

Descripción completa

Detalles Bibliográficos
Autores principales: Sigle, Manuel, Rohlfing, Anne-Katrin, Kenny, Martin, Scheuermann, Sophia, Sun, Na, Graeßner, Ulla, Haug, Verena, Sudmann, Jessica, Seitz, Christian M., Heinzmann, David, Schenke-Layland, Katja, Maguire, Patricia B., Walch, Axel, Marzi, Julia, Gawaz, Meinrad Paul
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509269/
https://www.ncbi.nlm.nih.gov/pubmed/37726278
http://dx.doi.org/10.1038/s41467-023-41417-0
_version_ 1785107708171517952
author Sigle, Manuel
Rohlfing, Anne-Katrin
Kenny, Martin
Scheuermann, Sophia
Sun, Na
Graeßner, Ulla
Haug, Verena
Sudmann, Jessica
Seitz, Christian M.
Heinzmann, David
Schenke-Layland, Katja
Maguire, Patricia B.
Walch, Axel
Marzi, Julia
Gawaz, Meinrad Paul
author_facet Sigle, Manuel
Rohlfing, Anne-Katrin
Kenny, Martin
Scheuermann, Sophia
Sun, Na
Graeßner, Ulla
Haug, Verena
Sudmann, Jessica
Seitz, Christian M.
Heinzmann, David
Schenke-Layland, Katja
Maguire, Patricia B.
Walch, Axel
Marzi, Julia
Gawaz, Meinrad Paul
author_sort Sigle, Manuel
collection PubMed
description Spatial transcriptomics of histological sections have revolutionized research in life sciences and enabled unprecedented insights into genetic processes involved in tissue reorganization. However, in contrast to genomic analysis, the actual biomolecular composition of the sample has fallen behind, leaving a gap of potentially highly valuable information. Raman microspectroscopy provides untargeted spatiomolecular information at high resolution, capable of filling this gap. In this study we demonstrate spatially resolved Raman “spectromics” to reveal homogeneity, heterogeneity and dynamics of cell matrix on molecular levels by repurposing state-of-the-art bioinformatic analysis tools commonly used for transcriptomic analyses. By exploring sections of murine myocardial infarction and cardiac hypertrophy, we identify myocardial subclusters when spatially approaching the pathology, and define the surrounding metabolic and cellular (immune-) landscape. Our innovative, label-free, non-invasive “spectromics” approach could therefore open perspectives for a profound characterization of histological samples, while additionally allowing the combination with consecutive downstream analyses of the very same specimen.
format Online
Article
Text
id pubmed-10509269
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-105092692023-09-21 Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution Sigle, Manuel Rohlfing, Anne-Katrin Kenny, Martin Scheuermann, Sophia Sun, Na Graeßner, Ulla Haug, Verena Sudmann, Jessica Seitz, Christian M. Heinzmann, David Schenke-Layland, Katja Maguire, Patricia B. Walch, Axel Marzi, Julia Gawaz, Meinrad Paul Nat Commun Article Spatial transcriptomics of histological sections have revolutionized research in life sciences and enabled unprecedented insights into genetic processes involved in tissue reorganization. However, in contrast to genomic analysis, the actual biomolecular composition of the sample has fallen behind, leaving a gap of potentially highly valuable information. Raman microspectroscopy provides untargeted spatiomolecular information at high resolution, capable of filling this gap. In this study we demonstrate spatially resolved Raman “spectromics” to reveal homogeneity, heterogeneity and dynamics of cell matrix on molecular levels by repurposing state-of-the-art bioinformatic analysis tools commonly used for transcriptomic analyses. By exploring sections of murine myocardial infarction and cardiac hypertrophy, we identify myocardial subclusters when spatially approaching the pathology, and define the surrounding metabolic and cellular (immune-) landscape. Our innovative, label-free, non-invasive “spectromics” approach could therefore open perspectives for a profound characterization of histological samples, while additionally allowing the combination with consecutive downstream analyses of the very same specimen. Nature Publishing Group UK 2023-09-19 /pmc/articles/PMC10509269/ /pubmed/37726278 http://dx.doi.org/10.1038/s41467-023-41417-0 Text en © The Author(s) 2023 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Sigle, Manuel
Rohlfing, Anne-Katrin
Kenny, Martin
Scheuermann, Sophia
Sun, Na
Graeßner, Ulla
Haug, Verena
Sudmann, Jessica
Seitz, Christian M.
Heinzmann, David
Schenke-Layland, Katja
Maguire, Patricia B.
Walch, Axel
Marzi, Julia
Gawaz, Meinrad Paul
Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution
title Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution
title_full Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution
title_fullStr Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution
title_full_unstemmed Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution
title_short Translating genomic tools to Raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution
title_sort translating genomic tools to raman spectroscopy analysis enables high-dimensional tissue characterization on molecular resolution
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509269/
https://www.ncbi.nlm.nih.gov/pubmed/37726278
http://dx.doi.org/10.1038/s41467-023-41417-0
work_keys_str_mv AT siglemanuel translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution
AT rohlfingannekatrin translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution
AT kennymartin translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution
AT scheuermannsophia translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution
AT sunna translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution
AT graeßnerulla translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution
AT haugverena translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution
AT sudmannjessica translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution
AT seitzchristianm translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution
AT heinzmanndavid translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution
AT schenkelaylandkatja translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution
AT maguirepatriciab translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution
AT walchaxel translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution
AT marzijulia translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution
AT gawazmeinradpaul translatinggenomictoolstoramanspectroscopyanalysisenableshighdimensionaltissuecharacterizationonmolecularresolution