Cargando…
Prediction of cytotoxicity of heavy metals adsorbed on nano-TiO(2) with periodic table descriptors using machine learning approaches
Nanoparticles with their unique features have attracted researchers over the past decades. Heavy metals, upon release and emission, may interact with different environmental components, which may lead to co-exposure to living organisms. Nanoscale titanium dioxide (nano-TiO(2)) can adsorb heavy metal...
Autores principales: | Roy, Joyita, Pore, Souvik, Roy, Kunal |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509545/ https://www.ncbi.nlm.nih.gov/pubmed/37736658 http://dx.doi.org/10.3762/bjnano.14.77 |
Ejemplares similares
-
Predicting cytotoxicity of PAMAM dendrimers using molecular descriptors
por: Jones, David E, et al.
Publicado: (2015) -
Machine Learning for Evaluating the Cytotoxicity of Mixtures of Nano-TiO(2) and Heavy Metals: QSAR Model Apply Random Forest Algorithm after Clustering Analysis
por: Sang, Leqi, et al.
Publicado: (2022) -
Polaron-Adsorbate Coupling at the TiO(2)(110)-Carboxylate
Interface
por: Tanner, Alex J., et al.
Publicado: (2021) -
Understanding the Uniqueness of 2p Elements in Periodic Tables
por: Wang, Zhen‐Ling, et al.
Publicado: (2020) -
TUCAN: A molecular identifier and descriptor applicable to the whole periodic table from hydrogen to oganesson
por: Brammer, Jan C., et al.
Publicado: (2022)