Cargando…

Characterization of an unanticipated indium-sulfur metallocycle complex

We have produced a novel indium-based metallocycle complex (In-MeSH), which we initially observed as an unanticipated side-product in metal–organic framework (MOF) syntheses. The serendipitously synthesized metallocycle forms via the acid-catalysed decomposition of dimethyl sulfoxide (DMSO) during s...

Descripción completa

Detalles Bibliográficos
Autores principales: Morris, Joshua J., Nevin, Adam, Cornelio, Joel, Easun, Timothy L.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10509580/
https://www.ncbi.nlm.nih.gov/pubmed/37736529
http://dx.doi.org/10.1098/rsos.230060
Descripción
Sumario:We have produced a novel indium-based metallocycle complex (In-MeSH), which we initially observed as an unanticipated side-product in metal–organic framework (MOF) syntheses. The serendipitously synthesized metallocycle forms via the acid-catalysed decomposition of dimethyl sulfoxide (DMSO) during solvothermal reactions in the presence of indium nitrate, dimethylformamide and nitric acid. A search through the Cambridge Structural Database revealed isostructural zinc, ruthenium and palladium metallocycle complexes formed by other routes. The ruthenium analogue is catalytically active and the In-MeSH structure similarly displays accessible open metal sites around the outside of the ring. Furthermore, this study also gives access to the relatively uncommon oxidation state of In(II), the targeted synthesis of which can be challenging. In(II) complexes have been reported as having potentially important applications in areas such as catalytic water splitting.