Cargando…

Fingerprinting fragments of fragile interstellar molecules: dissociation chemistry of pyridine and benzonitrile revealed by infrared spectroscopy and theory

The cationic fragmentation products in the dissociative ionization of pyridine and benzonitrile have been studied by infrared action spectroscopy in a cryogenic ion trap instrument at the Free-Electron Lasers for Infrared eXperiments (FELIX) Laboratory. A comparison of the experimental vibrational f...

Descripción completa

Detalles Bibliográficos
Autores principales: Rap, Daniël B., Simon, Aude, Steenbakkers, Kim, Schrauwen, Johanna G. M., Redlich, Britta, Brünken, Sandra
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510038/
https://www.ncbi.nlm.nih.gov/pubmed/37404008
http://dx.doi.org/10.1039/d3fd00015j
_version_ 1785107879729037312
author Rap, Daniël B.
Simon, Aude
Steenbakkers, Kim
Schrauwen, Johanna G. M.
Redlich, Britta
Brünken, Sandra
author_facet Rap, Daniël B.
Simon, Aude
Steenbakkers, Kim
Schrauwen, Johanna G. M.
Redlich, Britta
Brünken, Sandra
author_sort Rap, Daniël B.
collection PubMed
description The cationic fragmentation products in the dissociative ionization of pyridine and benzonitrile have been studied by infrared action spectroscopy in a cryogenic ion trap instrument at the Free-Electron Lasers for Infrared eXperiments (FELIX) Laboratory. A comparison of the experimental vibrational fingerprints of the dominant cationic fragments with those from quantum chemical calculations revealed a diversity of molecular fragment structures. The loss of HCN/HNC is shown to be the major fragmentation channel for both pyridine and benzonitrile. Using the determined structures of the cationic fragments, potential energy surfaces have been calculated to elucidate the nature of the neutral fragment partner. In the fragmentation chemistry of pyridine, multiple non-cyclic structures are formed, whereas the fragmentation of benzonitrile dominantly leads to the formation of cyclic structures. Among the fragments are linear cyano-(di)acetylene˙(+), methylene-cyclopropene˙(+) and o- and m-benzyne˙(+) structures, the latter possible building blocks in interstellar polycyclic aromatic hydrocarbon (PAH) formation chemistry. Molecular dynamics simulations using density functional based tight binding (MD/DFTB) were performed and used to benchmark and elucidate the different fragmentation pathways based on the experimentally determined structures. The implications of the difference in fragments observed for pyridine and benzonitrile are discussed in an astrochemical context.
format Online
Article
Text
id pubmed-10510038
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher The Royal Society of Chemistry
record_format MEDLINE/PubMed
spelling pubmed-105100382023-09-21 Fingerprinting fragments of fragile interstellar molecules: dissociation chemistry of pyridine and benzonitrile revealed by infrared spectroscopy and theory Rap, Daniël B. Simon, Aude Steenbakkers, Kim Schrauwen, Johanna G. M. Redlich, Britta Brünken, Sandra Faraday Discuss Chemistry The cationic fragmentation products in the dissociative ionization of pyridine and benzonitrile have been studied by infrared action spectroscopy in a cryogenic ion trap instrument at the Free-Electron Lasers for Infrared eXperiments (FELIX) Laboratory. A comparison of the experimental vibrational fingerprints of the dominant cationic fragments with those from quantum chemical calculations revealed a diversity of molecular fragment structures. The loss of HCN/HNC is shown to be the major fragmentation channel for both pyridine and benzonitrile. Using the determined structures of the cationic fragments, potential energy surfaces have been calculated to elucidate the nature of the neutral fragment partner. In the fragmentation chemistry of pyridine, multiple non-cyclic structures are formed, whereas the fragmentation of benzonitrile dominantly leads to the formation of cyclic structures. Among the fragments are linear cyano-(di)acetylene˙(+), methylene-cyclopropene˙(+) and o- and m-benzyne˙(+) structures, the latter possible building blocks in interstellar polycyclic aromatic hydrocarbon (PAH) formation chemistry. Molecular dynamics simulations using density functional based tight binding (MD/DFTB) were performed and used to benchmark and elucidate the different fragmentation pathways based on the experimentally determined structures. The implications of the difference in fragments observed for pyridine and benzonitrile are discussed in an astrochemical context. The Royal Society of Chemistry 2023-03-22 /pmc/articles/PMC10510038/ /pubmed/37404008 http://dx.doi.org/10.1039/d3fd00015j Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/
spellingShingle Chemistry
Rap, Daniël B.
Simon, Aude
Steenbakkers, Kim
Schrauwen, Johanna G. M.
Redlich, Britta
Brünken, Sandra
Fingerprinting fragments of fragile interstellar molecules: dissociation chemistry of pyridine and benzonitrile revealed by infrared spectroscopy and theory
title Fingerprinting fragments of fragile interstellar molecules: dissociation chemistry of pyridine and benzonitrile revealed by infrared spectroscopy and theory
title_full Fingerprinting fragments of fragile interstellar molecules: dissociation chemistry of pyridine and benzonitrile revealed by infrared spectroscopy and theory
title_fullStr Fingerprinting fragments of fragile interstellar molecules: dissociation chemistry of pyridine and benzonitrile revealed by infrared spectroscopy and theory
title_full_unstemmed Fingerprinting fragments of fragile interstellar molecules: dissociation chemistry of pyridine and benzonitrile revealed by infrared spectroscopy and theory
title_short Fingerprinting fragments of fragile interstellar molecules: dissociation chemistry of pyridine and benzonitrile revealed by infrared spectroscopy and theory
title_sort fingerprinting fragments of fragile interstellar molecules: dissociation chemistry of pyridine and benzonitrile revealed by infrared spectroscopy and theory
topic Chemistry
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510038/
https://www.ncbi.nlm.nih.gov/pubmed/37404008
http://dx.doi.org/10.1039/d3fd00015j
work_keys_str_mv AT rapdanielb fingerprintingfragmentsoffragileinterstellarmoleculesdissociationchemistryofpyridineandbenzonitrilerevealedbyinfraredspectroscopyandtheory
AT simonaude fingerprintingfragmentsoffragileinterstellarmoleculesdissociationchemistryofpyridineandbenzonitrilerevealedbyinfraredspectroscopyandtheory
AT steenbakkerskim fingerprintingfragmentsoffragileinterstellarmoleculesdissociationchemistryofpyridineandbenzonitrilerevealedbyinfraredspectroscopyandtheory
AT schrauwenjohannagm fingerprintingfragmentsoffragileinterstellarmoleculesdissociationchemistryofpyridineandbenzonitrilerevealedbyinfraredspectroscopyandtheory
AT redlichbritta fingerprintingfragmentsoffragileinterstellarmoleculesdissociationchemistryofpyridineandbenzonitrilerevealedbyinfraredspectroscopyandtheory
AT brunkensandra fingerprintingfragmentsoffragileinterstellarmoleculesdissociationchemistryofpyridineandbenzonitrilerevealedbyinfraredspectroscopyandtheory