Cargando…
Accurate and scalable representation of electric vehicles in energy system models: A virtual storage-based aggregation approach
The growing number of electric vehicles (EVs) will challenge the power system, but EVs may also support system balancing via smart charging. Modeling EVs’ system-level impact while respecting computational constraints requires the aggregation of individual profiles. We show that studies typically re...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510052/ https://www.ncbi.nlm.nih.gov/pubmed/37736041 http://dx.doi.org/10.1016/j.isci.2023.107816 |
Sumario: | The growing number of electric vehicles (EVs) will challenge the power system, but EVs may also support system balancing via smart charging. Modeling EVs’ system-level impact while respecting computational constraints requires the aggregation of individual profiles. We show that studies typically rely on too few profiles to accurately model EVs’ system-level impact and that a naïve aggregation of individual profiles leads to an overestimation of the fleet’s flexibility potential. To overcome this problem, we introduce a scalable and accurate aggregation approach based on the idea of modeling deviations from an uncontrolled charging strategy as virtual energy storage. We apply this to a German case study and estimate an average flexibility potential of 6.2 kWh/EV, only 10% of the result of a naïve aggregation. We conclude that our approach allows for a more realistic representation of EVs in energy system models and suggest applying it to other flexible assets. |
---|