Cargando…
Direct speech reconstruction from sensorimotor brain activity with optimized deep learning models
Objective. Development of brain–computer interface (BCI) technology is key for enabling communication in individuals who have lost the faculty of speech due to severe motor paralysis. A BCI control strategy that is gaining attention employs speech decoding from neural data. Recent studies have shown...
Autores principales: | Berezutskaya, Julia, Freudenburg, Zachary V, Vansteensel, Mariska J, Aarnoutse, Erik J, Ramsey, Nick F, van Gerven, Marcel A J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
IOP Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510111/ https://www.ncbi.nlm.nih.gov/pubmed/37467739 http://dx.doi.org/10.1088/1741-2552/ace8be |
Ejemplares similares
-
Open multimodal iEEG-fMRI dataset from naturalistic stimulation with a short audiovisual film
por: Berezutskaya, Julia, et al.
Publicado: (2022) -
Brain-optimized extraction of complex sound features that drive continuous auditory perception
por: Berezutskaya, Julia, et al.
Publicado: (2020) -
Classification of Articulator Movements and Movement Direction from Sensorimotor Cortex Activity
por: Salari, E., et al.
Publicado: (2019) -
Cortical network responses map onto data-driven features that capture visual semantics of movie fragments
por: Berezutskaya, Julia, et al.
Publicado: (2020) -
High‐density intracranial recordings reveal a distinct site in anterior dorsal precentral cortex that tracks perceived speech
por: Berezutskaya, Julia, et al.
Publicado: (2020)