Cargando…

ECL 3.0: a sensitive peptide identification tool for cross-linking mass spectrometry data analysis

BACKGROUND: Cross-linking mass spectrometry (XL-MS) is a powerful technique for detecting protein–protein interactions (PPIs) and modeling protein structures in a high-throughput manner. In XL-MS experiments, proteins are cross-linked by a chemical reagent (namely cross-linker), fragmented, and then...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhou, Chen, Dai, Shuaijian, Lai, Shengzhi, Lin, Yuanqiao, Zhang, Xuechen, Li, Ning, Yu, Weichuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510197/
https://www.ncbi.nlm.nih.gov/pubmed/37730532
http://dx.doi.org/10.1186/s12859-023-05473-z
Descripción
Sumario:BACKGROUND: Cross-linking mass spectrometry (XL-MS) is a powerful technique for detecting protein–protein interactions (PPIs) and modeling protein structures in a high-throughput manner. In XL-MS experiments, proteins are cross-linked by a chemical reagent (namely cross-linker), fragmented, and then fed into a tandem mass spectrum (MS/MS). Cross-linkers are either cleavable or non-cleavable, and each type requires distinct data analysis tools. However, both types of cross-linkers suffer from imbalanced fragmentation efficiency, resulting in a large number of unidentifiable spectra that hinder the discovery of PPIs and protein conformations. To address this challenge, researchers have sought to improve the sensitivity of XL-MS through invention of novel cross-linking reagents, optimization of sample preparation protocols, and development of data analysis algorithms. One promising approach to developing new data analysis methods is to apply a protein feedback mechanism in the analysis. It has significantly improved the sensitivity of analysis methods in the cleavable cross-linking data. The application of the protein feedback mechanism to the analysis of non-cleavable cross-linking data is expected to have an even greater impact because the majority of XL-MS experiments currently employs non-cleavable cross-linkers. RESULTS: In this study, we applied the protein feedback mechanism to the analysis of both non-cleavable and cleavable cross-linking data and observed a substantial improvement in cross-link spectrum matches (CSMs) compared to conventional methods. Furthermore, we developed a new software program, ECL 3.0, that integrates two algorithms and includes a user-friendly graphical interface to facilitate wider applications of this new program. CONCLUSIONS: ECL 3.0 source code is available at https://github.com/yuweichuan/ECL-PF.git. A quick tutorial is available at https://youtu.be/PpZgbi8V2xI. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12859-023-05473-z.