Cargando…
Gut microbiota signature in children with autism spectrum disorder who suffered from chronic gastrointestinal symptoms
BACKGROUND: Children diagnosed with autism spectrum disorder (ASD) frequently suffer from persistent gastrointestinal symptoms, such as constipation and diarrhea. Various studies have highlighted differences in gut microbiota composition between individuals with ASD and healthy controls of similar a...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510216/ https://www.ncbi.nlm.nih.gov/pubmed/37730588 http://dx.doi.org/10.1186/s12887-023-04292-8 |
Sumario: | BACKGROUND: Children diagnosed with autism spectrum disorder (ASD) frequently suffer from persistent gastrointestinal symptoms, such as constipation and diarrhea. Various studies have highlighted differences in gut microbiota composition between individuals with ASD and healthy controls of similar ages. However, it’s essential to recognize that these disparities may be influenced by cultural practices, dietary habits, and environmental factors. METHODS: In this study, we collected fecal samples from both children diagnosed with ASD (n = 42) and healthy individuals (n = 41) residing in the southeastern coastal region of China. Subsequently, 16 S rRNA gene sequencing and advanced bioinformatics analyses were conducted to investigate the distinctive features of gut microbial communities within each group. RESULTS: The ASD group consisted of 28 males and 14 females, with a median age of 5.8 years, while the control group included 25 males and 16 females, with a median age of 6.8 years. Among the 83 sequenced fecal samples, a total of 1031 operational taxonomic units (OTUs) were identified. These included 122 unique OTUs specific to the control group and 285 unique OTUs specific to the ASD group. Analyses of α-diversity and β-diversity unveiled significant differences in the abundance and composition of gut microbiota between the two groups. It was found that the dominant bacterial taxa in healthy individuals were UBA1819, Flavonifractor, and Bradyrhizobium. In contrast, the ASD group exhibited a prevalence of Streptococcus, Ruminococcus, and Ruminiclostridium. Further analysis using Kyoto Encyclopedia of Genes and Genomes (KEGG) and Clusters of Orthologous Groups (COG) showed significant differences in the metabolic functionalities of the gut microbiota between the two groups. Notably, the metabolic pathway related to alpha-linolenic acid (ALA) in the gut microbiota of the ASD group was notably diminished compared to the control group. Conversely, the ASD group demonstrated significantly elevated levels of metabolic pathways involving uncharacterized conserved proteins, aminoglycoside phosphotransferase, and inorganic pyrophosphatase compared to the control group. CONCLUSIONS: Overall, these results confirm that there are significant differences in the gut microbiota structure between children with ASD and healthy controls in the southeast coastal region of China. This underscores the critical significance of delving into clinical interventions capable of mitigating the gastrointestinal and psychological symptoms encountered by children with ASD. A particularly encouraging path for such interventions lies in the realm of fecal microbiota transplantation, a prospect that merits deeper inquiry. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12887-023-04292-8. |
---|