Cargando…
macJNet: weakly-supervised multimodal image deformable registration using joint learning framework and multi-sampling cascaded MIND
Deformable multimodal image registration plays a key role in medical image analysis. It remains a challenge to find accurate dense correspondences between multimodal images due to the significant intensity distortion and the large deformation. macJNet is proposed to align the multimodal medical imag...
Autores principales: | Zhou, Zhiyong, Hong, Ben, Qian, Xusheng, Hu, Jisu, Shen, Minglei, Ji, Jiansong, Dai, Yakang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510294/ https://www.ncbi.nlm.nih.gov/pubmed/37726780 http://dx.doi.org/10.1186/s12938-023-01143-6 |
Ejemplares similares
-
Weakly-supervised convolutional neural networks for multimodal image registration
por: Hu, Yipeng, et al.
Publicado: (2018) -
JNets: Exploring networks by integrating annotation
por: MacPherson, Jamie I, et al.
Publicado: (2009) -
Accurate and Robust Non-rigid Point Set Registration using Student’s-t Mixture Model with Prior Probability Modeling
por: Zhou, Zhiyong, et al.
Publicado: (2018) -
Brain CT registration using hybrid supervised convolutional neural network
por: Yuan, Hongmei, et al.
Publicado: (2021) -
JNETS clinical practice guidelines for gastroenteropancreatic neuroendocrine neoplasms: diagnosis, treatment, and follow-up: a synopsis
por: Ito, Tetsuhide, et al.
Publicado: (2021)