Cargando…
Spring temperature drives phenotypic selection on plasticity of flowering time
In seasonal environments, a high responsiveness of development to increasing temperatures in spring can infer benefits in terms of a longer growing season, but also costs in terms of an increased risk of facing unfavourable weather conditions. Still, we know little about how climatic conditions infl...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510446/ https://www.ncbi.nlm.nih.gov/pubmed/37670583 http://dx.doi.org/10.1098/rspb.2023.0670 |
_version_ | 1785107971241410560 |
---|---|
author | Valdés, Alicia Arnold, Pieter A. Ehrlén, Johan |
author_facet | Valdés, Alicia Arnold, Pieter A. Ehrlén, Johan |
author_sort | Valdés, Alicia |
collection | PubMed |
description | In seasonal environments, a high responsiveness of development to increasing temperatures in spring can infer benefits in terms of a longer growing season, but also costs in terms of an increased risk of facing unfavourable weather conditions. Still, we know little about how climatic conditions influence the optimal plastic response. Using 22 years of field observations for the perennial forest herb Lathyrus vernus, we assessed phenotypic selection on among-individual variation in reaction norms of flowering time to spring temperature, and examined if among-year variation in selection on plasticity was associated with spring temperature conditions. We found significant among-individual variation in mean flowering time and flowering time plasticity, and that plants that flowered earlier also had a more plastic flowering time. Selection favoured individuals with an earlier mean flowering time and a lower thermal plasticity of flowering time. Less plastic individuals were more strongly favoured in colder springs, indicating that spring temperature influenced optimal flowering time plasticity. Our results show how selection on plasticity can be linked to climatic conditions, and illustrate how we can understand and predict evolutionary responses of organisms to changing environmental conditions. |
format | Online Article Text |
id | pubmed-10510446 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | The Royal Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-105104462023-09-21 Spring temperature drives phenotypic selection on plasticity of flowering time Valdés, Alicia Arnold, Pieter A. Ehrlén, Johan Proc Biol Sci Ecology In seasonal environments, a high responsiveness of development to increasing temperatures in spring can infer benefits in terms of a longer growing season, but also costs in terms of an increased risk of facing unfavourable weather conditions. Still, we know little about how climatic conditions influence the optimal plastic response. Using 22 years of field observations for the perennial forest herb Lathyrus vernus, we assessed phenotypic selection on among-individual variation in reaction norms of flowering time to spring temperature, and examined if among-year variation in selection on plasticity was associated with spring temperature conditions. We found significant among-individual variation in mean flowering time and flowering time plasticity, and that plants that flowered earlier also had a more plastic flowering time. Selection favoured individuals with an earlier mean flowering time and a lower thermal plasticity of flowering time. Less plastic individuals were more strongly favoured in colder springs, indicating that spring temperature influenced optimal flowering time plasticity. Our results show how selection on plasticity can be linked to climatic conditions, and illustrate how we can understand and predict evolutionary responses of organisms to changing environmental conditions. The Royal Society 2023-09-06 /pmc/articles/PMC10510446/ /pubmed/37670583 http://dx.doi.org/10.1098/rspb.2023.0670 Text en © 2023 The Authors. https://creativecommons.org/licenses/by/4.0/Published by the Royal Society under the terms of the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, provided the original author and source are credited. |
spellingShingle | Ecology Valdés, Alicia Arnold, Pieter A. Ehrlén, Johan Spring temperature drives phenotypic selection on plasticity of flowering time |
title | Spring temperature drives phenotypic selection on plasticity of flowering time |
title_full | Spring temperature drives phenotypic selection on plasticity of flowering time |
title_fullStr | Spring temperature drives phenotypic selection on plasticity of flowering time |
title_full_unstemmed | Spring temperature drives phenotypic selection on plasticity of flowering time |
title_short | Spring temperature drives phenotypic selection on plasticity of flowering time |
title_sort | spring temperature drives phenotypic selection on plasticity of flowering time |
topic | Ecology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510446/ https://www.ncbi.nlm.nih.gov/pubmed/37670583 http://dx.doi.org/10.1098/rspb.2023.0670 |
work_keys_str_mv | AT valdesalicia springtemperaturedrivesphenotypicselectiononplasticityoffloweringtime AT arnoldpietera springtemperaturedrivesphenotypicselectiononplasticityoffloweringtime AT ehrlenjohan springtemperaturedrivesphenotypicselectiononplasticityoffloweringtime |