Cargando…
Deep neural networks effectively model neural adaptation to changing background noise and suggest nonlinear noise filtering methods in auditory cortex
The human auditory system displays a robust capacity to adapt to sudden changes in background noise, allowing for continuous speech comprehension despite changes in background environments. However, despite comprehensive studies characterizing this ability, the computations that underly this process...
Autores principales: | Mischler, Gavin, Keshishian, Menoua, Bickel, Stephan, Mehta, Ashesh D., Mesgarani, Nima |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510744/ https://www.ncbi.nlm.nih.gov/pubmed/36529203 http://dx.doi.org/10.1016/j.neuroimage.2022.119819 |
Ejemplares similares
-
Adaptation of the human auditory cortex to changing background noise
por: Khalighinejad, Bahar, et al.
Publicado: (2019) -
naplib-python: Neural Acoustic Data Processing and Analysis Tools in Python
por: Mischler, Gavin, et al.
Publicado: (2023) -
naplib-python: Neural acoustic data processing and analysis tools in python
por: Mischler, Gavin, et al.
Publicado: (2023) -
Estimating and interpreting nonlinear receptive field of sensory neural responses with deep neural network models
por: Keshishian, Menoua, et al.
Publicado: (2020) -
Improved Speech Hearing in Noise with Invasive Electrical Brain Stimulation
por: Patel, Prachi, et al.
Publicado: (2022)