Cargando…
Simulated Design–Build–Test–Learn Cycles for Consistent Comparison of Machine Learning Methods in Metabolic Engineering
[Image: see text] Combinatorial pathway optimization is an important tool in metabolic flux optimization. Simultaneous optimization of a large number of pathway genes often leads to combinatorial explosions. Strain optimization is therefore often performed using iterative design–build–test–learn (DB...
Autores principales: | van Lent, Paul, Schmitz, Joep, Abeel, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2023
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510747/ https://www.ncbi.nlm.nih.gov/pubmed/37616156 http://dx.doi.org/10.1021/acssynbio.3c00186 |
Ejemplares similares
-
Learning to program with MATLAB: building GUI tools
por: Lent, Craig S
Publicado: (2013) -
Building intelligent systems: a guide to machine learning engineering
por: Hulten, Geoff
Publicado: (2018) -
Machine learning in Java: design, build, and deploy your own machine learning applications by leveraging key Java machine learning libraries
por: Kaluz̆a, Bos̆tjan
Publicado: (2016) -
Machine learning in Java: helpful techniques to design, build, and deploy powerful machine learning applications in Java
por: Bhatia, Ashish Singh, et al.
Publicado: (2018) -
Building Machine Learning Pipelines
por: Hapke, Hannes
Publicado: (2020)