Cargando…
Training and testing of a gradient boosted machine learning model to predict adverse outcome in patients presenting to emergency departments with suspected covid-19 infection in a middle-income setting
COVID-19 infection rates remain high in South Africa. Clinical prediction models may be helpful for rapid triage, and supporting clinical decision making, for patients with suspected COVID-19 infection. The Western Cape, South Africa, has integrated electronic health care data facilitating large-sca...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511129/ https://www.ncbi.nlm.nih.gov/pubmed/37729117 http://dx.doi.org/10.1371/journal.pdig.0000309 |
_version_ | 1785108081433116672 |
---|---|
author | Fuller, Gordon Ward Hasan, Madina Hodkinson, Peter McAlpine, David Goodacre, Steve Bath, Peter A. Sbaffi, Laura Omer, Yasein Wallis, Lee Marincowitz, Carl |
author_facet | Fuller, Gordon Ward Hasan, Madina Hodkinson, Peter McAlpine, David Goodacre, Steve Bath, Peter A. Sbaffi, Laura Omer, Yasein Wallis, Lee Marincowitz, Carl |
author_sort | Fuller, Gordon Ward |
collection | PubMed |
description | COVID-19 infection rates remain high in South Africa. Clinical prediction models may be helpful for rapid triage, and supporting clinical decision making, for patients with suspected COVID-19 infection. The Western Cape, South Africa, has integrated electronic health care data facilitating large-scale linked routine datasets. The aim of this study was to develop a machine learning model to predict adverse outcome in patients presenting with suspected COVID-19 suitable for use in a middle-income setting. A retrospective cohort study was conducted using linked, routine data, from patients presenting with suspected COVID-19 infection to public-sector emergency departments (EDs) in the Western Cape, South Africa between 27th August 2020 and 31(st) October 2021. The primary outcome was death or critical care admission at 30 days. An XGBoost machine learning model was trained and internally tested using split-sample validation. External validation was performed in 3 test cohorts: Western Cape patients presenting during the Omicron COVID-19 wave, a UK cohort during the ancestral COVID-19 wave, and a Sudanese cohort during ancestral and Eta waves. A total of 282,051 cases were included in a complete case training dataset. The prevalence of 30-day adverse outcome was 4.0%. The most important features for predicting adverse outcome were the requirement for supplemental oxygen, peripheral oxygen saturations, level of consciousness and age. Internal validation using split-sample test data revealed excellent discrimination (C-statistic 0.91, 95% CI 0.90 to 0.91) and calibration (CITL of 1.05). The model achieved C-statistics of 0.84 (95% CI 0.84 to 0.85), 0.72 (95% CI 0.71 to 0.73), and 0.62, (95% CI 0.59 to 0.65) in the Omicron, UK, and Sudanese test cohorts. Results were materially unchanged in sensitivity analyses examining missing data. An XGBoost machine learning model achieved good discrimination and calibration in prediction of adverse outcome in patients presenting with suspected COVID19 to Western Cape EDs. Performance was reduced in temporal and geographical external validation. |
format | Online Article Text |
id | pubmed-10511129 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-105111292023-09-21 Training and testing of a gradient boosted machine learning model to predict adverse outcome in patients presenting to emergency departments with suspected covid-19 infection in a middle-income setting Fuller, Gordon Ward Hasan, Madina Hodkinson, Peter McAlpine, David Goodacre, Steve Bath, Peter A. Sbaffi, Laura Omer, Yasein Wallis, Lee Marincowitz, Carl PLOS Digit Health Research Article COVID-19 infection rates remain high in South Africa. Clinical prediction models may be helpful for rapid triage, and supporting clinical decision making, for patients with suspected COVID-19 infection. The Western Cape, South Africa, has integrated electronic health care data facilitating large-scale linked routine datasets. The aim of this study was to develop a machine learning model to predict adverse outcome in patients presenting with suspected COVID-19 suitable for use in a middle-income setting. A retrospective cohort study was conducted using linked, routine data, from patients presenting with suspected COVID-19 infection to public-sector emergency departments (EDs) in the Western Cape, South Africa between 27th August 2020 and 31(st) October 2021. The primary outcome was death or critical care admission at 30 days. An XGBoost machine learning model was trained and internally tested using split-sample validation. External validation was performed in 3 test cohorts: Western Cape patients presenting during the Omicron COVID-19 wave, a UK cohort during the ancestral COVID-19 wave, and a Sudanese cohort during ancestral and Eta waves. A total of 282,051 cases were included in a complete case training dataset. The prevalence of 30-day adverse outcome was 4.0%. The most important features for predicting adverse outcome were the requirement for supplemental oxygen, peripheral oxygen saturations, level of consciousness and age. Internal validation using split-sample test data revealed excellent discrimination (C-statistic 0.91, 95% CI 0.90 to 0.91) and calibration (CITL of 1.05). The model achieved C-statistics of 0.84 (95% CI 0.84 to 0.85), 0.72 (95% CI 0.71 to 0.73), and 0.62, (95% CI 0.59 to 0.65) in the Omicron, UK, and Sudanese test cohorts. Results were materially unchanged in sensitivity analyses examining missing data. An XGBoost machine learning model achieved good discrimination and calibration in prediction of adverse outcome in patients presenting with suspected COVID19 to Western Cape EDs. Performance was reduced in temporal and geographical external validation. Public Library of Science 2023-09-20 /pmc/articles/PMC10511129/ /pubmed/37729117 http://dx.doi.org/10.1371/journal.pdig.0000309 Text en © 2023 Fuller et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Fuller, Gordon Ward Hasan, Madina Hodkinson, Peter McAlpine, David Goodacre, Steve Bath, Peter A. Sbaffi, Laura Omer, Yasein Wallis, Lee Marincowitz, Carl Training and testing of a gradient boosted machine learning model to predict adverse outcome in patients presenting to emergency departments with suspected covid-19 infection in a middle-income setting |
title | Training and testing of a gradient boosted machine learning model to predict adverse outcome in patients presenting to emergency departments with suspected covid-19 infection in a middle-income setting |
title_full | Training and testing of a gradient boosted machine learning model to predict adverse outcome in patients presenting to emergency departments with suspected covid-19 infection in a middle-income setting |
title_fullStr | Training and testing of a gradient boosted machine learning model to predict adverse outcome in patients presenting to emergency departments with suspected covid-19 infection in a middle-income setting |
title_full_unstemmed | Training and testing of a gradient boosted machine learning model to predict adverse outcome in patients presenting to emergency departments with suspected covid-19 infection in a middle-income setting |
title_short | Training and testing of a gradient boosted machine learning model to predict adverse outcome in patients presenting to emergency departments with suspected covid-19 infection in a middle-income setting |
title_sort | training and testing of a gradient boosted machine learning model to predict adverse outcome in patients presenting to emergency departments with suspected covid-19 infection in a middle-income setting |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511129/ https://www.ncbi.nlm.nih.gov/pubmed/37729117 http://dx.doi.org/10.1371/journal.pdig.0000309 |
work_keys_str_mv | AT fullergordonward trainingandtestingofagradientboostedmachinelearningmodeltopredictadverseoutcomeinpatientspresentingtoemergencydepartmentswithsuspectedcovid19infectioninamiddleincomesetting AT hasanmadina trainingandtestingofagradientboostedmachinelearningmodeltopredictadverseoutcomeinpatientspresentingtoemergencydepartmentswithsuspectedcovid19infectioninamiddleincomesetting AT hodkinsonpeter trainingandtestingofagradientboostedmachinelearningmodeltopredictadverseoutcomeinpatientspresentingtoemergencydepartmentswithsuspectedcovid19infectioninamiddleincomesetting AT mcalpinedavid trainingandtestingofagradientboostedmachinelearningmodeltopredictadverseoutcomeinpatientspresentingtoemergencydepartmentswithsuspectedcovid19infectioninamiddleincomesetting AT goodacresteve trainingandtestingofagradientboostedmachinelearningmodeltopredictadverseoutcomeinpatientspresentingtoemergencydepartmentswithsuspectedcovid19infectioninamiddleincomesetting AT bathpetera trainingandtestingofagradientboostedmachinelearningmodeltopredictadverseoutcomeinpatientspresentingtoemergencydepartmentswithsuspectedcovid19infectioninamiddleincomesetting AT sbaffilaura trainingandtestingofagradientboostedmachinelearningmodeltopredictadverseoutcomeinpatientspresentingtoemergencydepartmentswithsuspectedcovid19infectioninamiddleincomesetting AT omeryasein trainingandtestingofagradientboostedmachinelearningmodeltopredictadverseoutcomeinpatientspresentingtoemergencydepartmentswithsuspectedcovid19infectioninamiddleincomesetting AT wallislee trainingandtestingofagradientboostedmachinelearningmodeltopredictadverseoutcomeinpatientspresentingtoemergencydepartmentswithsuspectedcovid19infectioninamiddleincomesetting AT marincowitzcarl trainingandtestingofagradientboostedmachinelearningmodeltopredictadverseoutcomeinpatientspresentingtoemergencydepartmentswithsuspectedcovid19infectioninamiddleincomesetting |