Cargando…

Multi-compartment head modeling in EEG: Unstructured boundary-fitted tetra meshing with subcortical structures

This paper introduces an automated approach for generating a finite element (FE) discretization of a multi-compartment human head model for electroencephalographic (EEG) source localization. We aim to provide an adaptable FE mesh generation tool for EEG studies. Our technique relies on recursive sol...

Descripción completa

Detalles Bibliográficos
Autores principales: Galaz Prieto, Fernando, Lahtinen, Joonas, Samavaki, Maryam, Pursiainen, Sampsa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511141/
https://www.ncbi.nlm.nih.gov/pubmed/37729152
http://dx.doi.org/10.1371/journal.pone.0290715
Descripción
Sumario:This paper introduces an automated approach for generating a finite element (FE) discretization of a multi-compartment human head model for electroencephalographic (EEG) source localization. We aim to provide an adaptable FE mesh generation tool for EEG studies. Our technique relies on recursive solid angle labeling of a surface segmentation coupled with smoothing, refinement, inflation, and optimization procedures to enhance the mesh quality. In this study, we performed numerical meshing experiments with the three-layer Ary sphere and a magnetic resonance imaging (MRI)-based multi-compartment head segmentation which incorporates a comprehensive set of subcortical brain structures. These experiments are motivated, on one hand, by the sensitivity of non-invasive subcortical source localization to modeling errors and, on the other hand, by the present lack of open EEG software pipelines to discretize all these structures. Our approach was found to successfully produce an unstructured and boundary-fitted tetrahedral mesh with a sub-one-millimeter fitting error, providing the desired accuracy for the three-dimensional anatomical details, EEG lead field matrix, and source localization. The mesh generator applied in this study has been implemented in the open MATLAB-based Zeffiro Interface toolbox for forward and inverse processing in EEG and it allows for graphics processing unit acceleration.