Cargando…
Diagnostic test accuracy of artificial intelligence in screening for referable diabetic retinopathy in real-world settings: A systematic review and meta-analysis
Retrospective studies on artificial intelligence (AI) in screening for diabetic retinopathy (DR) have shown promising results in addressing the mismatch between the capacity to implement DR screening and increasing DR incidence. This review sought to evaluate the diagnostic test accuracy (DTA) of AI...
Autores principales: | Uy, Holijah, Fielding, Christopher, Hohlfeld, Ameer, Ochodo, Eleanor, Opare, Abraham, Mukonda, Elton, Minnies, Deon, Engel, Mark E. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511145/ https://www.ncbi.nlm.nih.gov/pubmed/37729122 http://dx.doi.org/10.1371/journal.pgph.0002160 |
Ejemplares similares
-
Artificial intelligence for diabetic retinopathy screening: beyond diagnostic accuracy
por: Malerbi, Fernando Korn
Publicado: (2022) -
Artificial intelligence for diabetic retinopathy
por: Li, Sicong, et al.
Publicado: (2022) -
Artificial Intelligence in Retinopathy of Prematurity Diagnosis
por: Scruggs, Brittni A., et al.
Publicado: (2020) -
A comparative analysis and review of how national guidelines for chronic disease monitoring are made in low- and middle-income compared to high-income countries
por: Mukonda, Elton, et al.
Publicado: (2021) -
Efficacy of deep learning-based artificial intelligence models in screening and referring patients with diabetic retinopathy and glaucoma
por: Surya, Janani, et al.
Publicado: (2023)