Cargando…

Optical force brush enabled free-space painting of 4D functional structures

Femtosecond laser–based technique called two-photon polymerization (TPP) has emerged as a powerful tool for nanofabrication and integrating nanomaterials. However, challenges persist in existing three-dimensional (3D) nanoprinting methods, such as slow layer-by-layer printing and limited material op...

Descripción completa

Detalles Bibliográficos
Autores principales: Yi, Chenqi, Qu, Shuyuan, Wang, Yaoyu, Qi, Haoning, Zhang, Yufeng, Cheng, Gary J.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511190/
https://www.ncbi.nlm.nih.gov/pubmed/37729409
http://dx.doi.org/10.1126/sciadv.adg0300
Descripción
Sumario:Femtosecond laser–based technique called two-photon polymerization (TPP) has emerged as a powerful tool for nanofabrication and integrating nanomaterials. However, challenges persist in existing three-dimensional (3D) nanoprinting methods, such as slow layer-by-layer printing and limited material options due to laser-matter interactions. Here, we present an approach to 3D nanoprinting called free-space nanopainting, using an optical force brush (OFB). OFB enables precise spatial writing paths, instantaneous adjustment of linewidths and concentrations, and unrestricted resolution beyond optical limits. OFB allows rapid aggregation and solidification of radicals, resulting in narrower lines at lower polymerization thresholds and enhanced sensitivity to laser energy. This advancement enables high-accuracy free-space painting, analogous to Chinese brush painting on paper. The printing speed is increased substantially compared to layer-by-layer methods, from 100 to 1000 times faster. We successfully printed various bionic muscle models derived from 4D nanostructures with tunable mechanical properties, responsive to electrical signals, and excellent biocompatibility.