Cargando…

Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device

We developed an innovative millifluidic organ-on-a-chip device, named MINERVA 2.0, that is optically accessible and suitable to serial connection. In the present work, we evaluated MINERVA 2.0 as millifluidic gut epithelium-on-a-chip by using computational modeling and biological assessment. We also...

Descripción completa

Detalles Bibliográficos
Autores principales: Donnaloja, Francesca, Izzo, Luca, Campanile, Marzia, Perottoni, Simone, Boeri, Lucia, Fanizza, Francesca, Sardelli, Lorenzo, Jacchetti, Emanuela, Raimondi, Manuela T., Rito, Laura Di, Craparotta, Ilaria, Bolis, Marco, Giordano, Carmen, Albani, Diego
Formato: Online Artículo Texto
Lenguaje:English
Publicado: AIP Publishing LLC 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511260/
https://www.ncbi.nlm.nih.gov/pubmed/37736017
http://dx.doi.org/10.1063/5.0144862
_version_ 1785108099700359168
author Donnaloja, Francesca
Izzo, Luca
Campanile, Marzia
Perottoni, Simone
Boeri, Lucia
Fanizza, Francesca
Sardelli, Lorenzo
Jacchetti, Emanuela
Raimondi, Manuela T.
Rito, Laura Di
Craparotta, Ilaria
Bolis, Marco
Giordano, Carmen
Albani, Diego
author_facet Donnaloja, Francesca
Izzo, Luca
Campanile, Marzia
Perottoni, Simone
Boeri, Lucia
Fanizza, Francesca
Sardelli, Lorenzo
Jacchetti, Emanuela
Raimondi, Manuela T.
Rito, Laura Di
Craparotta, Ilaria
Bolis, Marco
Giordano, Carmen
Albani, Diego
author_sort Donnaloja, Francesca
collection PubMed
description We developed an innovative millifluidic organ-on-a-chip device, named MINERVA 2.0, that is optically accessible and suitable to serial connection. In the present work, we evaluated MINERVA 2.0 as millifluidic gut epithelium-on-a-chip by using computational modeling and biological assessment. We also tested MINERVA 2.0 in a serially connected configuration prodromal to address the complexity of multiorgan interaction. Once cultured under perfusion in our device, human gut immortalized Caco-2 epithelial cells were able to survive at least up to 7 days and form a three-dimensional layer with detectable tight junctions (occludin and zonulin-1 positive). Functional layer development was supported by measurable trans-epithelial resistance and FITC-dextran permeability regulation, together with mucin-2 expression. The dynamic culturing led to a specific transcriptomic profile, assessed by RNASeq, with a total of 524 dysregulated transcripts (191 upregulated and 333 downregulated) between static and dynamic condition. Overall, the collected results suggest that our gut-on-a-chip millifluidic model displays key gut epithelium features and, thanks to its modular design, may be the basis to build a customizable multiorgan-on-a-chip platform.
format Online
Article
Text
id pubmed-10511260
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher AIP Publishing LLC
record_format MEDLINE/PubMed
spelling pubmed-105112602023-09-21 Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device Donnaloja, Francesca Izzo, Luca Campanile, Marzia Perottoni, Simone Boeri, Lucia Fanizza, Francesca Sardelli, Lorenzo Jacchetti, Emanuela Raimondi, Manuela T. Rito, Laura Di Craparotta, Ilaria Bolis, Marco Giordano, Carmen Albani, Diego APL Bioeng Articles We developed an innovative millifluidic organ-on-a-chip device, named MINERVA 2.0, that is optically accessible and suitable to serial connection. In the present work, we evaluated MINERVA 2.0 as millifluidic gut epithelium-on-a-chip by using computational modeling and biological assessment. We also tested MINERVA 2.0 in a serially connected configuration prodromal to address the complexity of multiorgan interaction. Once cultured under perfusion in our device, human gut immortalized Caco-2 epithelial cells were able to survive at least up to 7 days and form a three-dimensional layer with detectable tight junctions (occludin and zonulin-1 positive). Functional layer development was supported by measurable trans-epithelial resistance and FITC-dextran permeability regulation, together with mucin-2 expression. The dynamic culturing led to a specific transcriptomic profile, assessed by RNASeq, with a total of 524 dysregulated transcripts (191 upregulated and 333 downregulated) between static and dynamic condition. Overall, the collected results suggest that our gut-on-a-chip millifluidic model displays key gut epithelium features and, thanks to its modular design, may be the basis to build a customizable multiorgan-on-a-chip platform. AIP Publishing LLC 2023-09-19 /pmc/articles/PMC10511260/ /pubmed/37736017 http://dx.doi.org/10.1063/5.0144862 Text en © 2023 Author(s). https://creativecommons.org/licenses/by/4.0/All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) ).
spellingShingle Articles
Donnaloja, Francesca
Izzo, Luca
Campanile, Marzia
Perottoni, Simone
Boeri, Lucia
Fanizza, Francesca
Sardelli, Lorenzo
Jacchetti, Emanuela
Raimondi, Manuela T.
Rito, Laura Di
Craparotta, Ilaria
Bolis, Marco
Giordano, Carmen
Albani, Diego
Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device
title Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device
title_full Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device
title_fullStr Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device
title_full_unstemmed Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device
title_short Human gut epithelium features recapitulated in MINERVA 2.0 millifluidic organ-on-a-chip device
title_sort human gut epithelium features recapitulated in minerva 2.0 millifluidic organ-on-a-chip device
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511260/
https://www.ncbi.nlm.nih.gov/pubmed/37736017
http://dx.doi.org/10.1063/5.0144862
work_keys_str_mv AT donnalojafrancesca humangutepitheliumfeaturesrecapitulatedinminerva20millifluidicorganonachipdevice
AT izzoluca humangutepitheliumfeaturesrecapitulatedinminerva20millifluidicorganonachipdevice
AT campanilemarzia humangutepitheliumfeaturesrecapitulatedinminerva20millifluidicorganonachipdevice
AT perottonisimone humangutepitheliumfeaturesrecapitulatedinminerva20millifluidicorganonachipdevice
AT boerilucia humangutepitheliumfeaturesrecapitulatedinminerva20millifluidicorganonachipdevice
AT fanizzafrancesca humangutepitheliumfeaturesrecapitulatedinminerva20millifluidicorganonachipdevice
AT sardellilorenzo humangutepitheliumfeaturesrecapitulatedinminerva20millifluidicorganonachipdevice
AT jacchettiemanuela humangutepitheliumfeaturesrecapitulatedinminerva20millifluidicorganonachipdevice
AT raimondimanuelat humangutepitheliumfeaturesrecapitulatedinminerva20millifluidicorganonachipdevice
AT ritolauradi humangutepitheliumfeaturesrecapitulatedinminerva20millifluidicorganonachipdevice
AT craparottailaria humangutepitheliumfeaturesrecapitulatedinminerva20millifluidicorganonachipdevice
AT bolismarco humangutepitheliumfeaturesrecapitulatedinminerva20millifluidicorganonachipdevice
AT giordanocarmen humangutepitheliumfeaturesrecapitulatedinminerva20millifluidicorganonachipdevice
AT albanidiego humangutepitheliumfeaturesrecapitulatedinminerva20millifluidicorganonachipdevice