Cargando…

Copper Super-Dosing Improves Performance of Heat-Stressed Broiler Chickens through Modulation of Expression of Proinflammatory Cytokine Genes

Continuous exposure to high ambient temperatures brings about a number of oxidative damages in chickens. Copper (Cu), an active component of a number of antioxidative defence components, should arrest these changes to take place although that may not be possible under the standard dosing regimen fol...

Descripción completa

Detalles Bibliográficos
Autores principales: Haldar, Sudipto, Dhara, Amrita Kumar, Sihi Arora, Sayantani, Verma Mukherjee, Arpana, Nayak, Arup
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511294/
https://www.ncbi.nlm.nih.gov/pubmed/37736129
http://dx.doi.org/10.1155/2023/3559234
_version_ 1785108106618863616
author Haldar, Sudipto
Dhara, Amrita Kumar
Sihi Arora, Sayantani
Verma Mukherjee, Arpana
Nayak, Arup
author_facet Haldar, Sudipto
Dhara, Amrita Kumar
Sihi Arora, Sayantani
Verma Mukherjee, Arpana
Nayak, Arup
author_sort Haldar, Sudipto
collection PubMed
description Continuous exposure to high ambient temperatures brings about a number of oxidative damages in chickens. Copper (Cu), an active component of a number of antioxidative defence components, should arrest these changes to take place although that may not be possible under the standard dosing regimen followed by the industry. To ascertain the optimum dose response that may be beneficial in sustaining the performance of chickens under heat stress (HS), broiler chickens (n = 400) were exposed to high ambient temperature (between 27.2°C and 35.3°C) during 1–35 d. Copper (Cu) as Cu proteinate (Cu-P) at concentrations of 37.5, 75, 112.5, and 150 mg/kg was supplemented to the diet. The negative control (NC) diet did not contain any supplemental Cu. Increasing dietary Cu improved (P < 0.001) body weight, feed intake, and conversion ratio. Serum concentrations of total cholesterol at 21 d (P = 0.009), HDL cholesterol at 35 d (P = 0.008), LDL cholesterol at 21 d (P = 0.015), and triacylglycerol at both 21 d (P = 0.033) and 35 d (P = 0.001) decreased as Cu in the diet increased. As Cu in the diet increased, hemoglobin increased (P = 0.003) at 21 d, and the heterophil to lymphocyte ratio decreased both at 21 d (P = 0.047) and 35 d (P = 0.001). Superoxide dismutase and glutathione peroxidase activities increased when dietary Cu increased to 150 mg/kg (P < 0.01). Liver Cu at 35 d increased linearly with the dose of Cu in the diet (P = 0.0001). Selected bacteria were enumerated in the digesta to ascertain if Cu super-dosing affected their population in any way in the absence of any enteric challenge. Escherichia coli and total Salmonella numbers decreased (P = 0.0001), and total Lactobacillus increased (P = 0.0001) proportionately with dietary Cu. Interleukin-6 and tumour necrosis factor-α gene expression increased linearly (P = 0.0001) as Cu in the diet increased though the response plateaued at 112.5 mg/kg. It was concluded from the present experiment that during conditions of impending HS, dietary supplementation of 112.5 to 150 mg Cu/kg diet as Cu-P may be a novel strategy to alleviate the negative effects of HS without involving any apparent risk of Cu toxicity.
format Online
Article
Text
id pubmed-10511294
institution National Center for Biotechnology Information
language English
publishDate 2023
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-105112942023-09-21 Copper Super-Dosing Improves Performance of Heat-Stressed Broiler Chickens through Modulation of Expression of Proinflammatory Cytokine Genes Haldar, Sudipto Dhara, Amrita Kumar Sihi Arora, Sayantani Verma Mukherjee, Arpana Nayak, Arup Vet Med Int Research Article Continuous exposure to high ambient temperatures brings about a number of oxidative damages in chickens. Copper (Cu), an active component of a number of antioxidative defence components, should arrest these changes to take place although that may not be possible under the standard dosing regimen followed by the industry. To ascertain the optimum dose response that may be beneficial in sustaining the performance of chickens under heat stress (HS), broiler chickens (n = 400) were exposed to high ambient temperature (between 27.2°C and 35.3°C) during 1–35 d. Copper (Cu) as Cu proteinate (Cu-P) at concentrations of 37.5, 75, 112.5, and 150 mg/kg was supplemented to the diet. The negative control (NC) diet did not contain any supplemental Cu. Increasing dietary Cu improved (P < 0.001) body weight, feed intake, and conversion ratio. Serum concentrations of total cholesterol at 21 d (P = 0.009), HDL cholesterol at 35 d (P = 0.008), LDL cholesterol at 21 d (P = 0.015), and triacylglycerol at both 21 d (P = 0.033) and 35 d (P = 0.001) decreased as Cu in the diet increased. As Cu in the diet increased, hemoglobin increased (P = 0.003) at 21 d, and the heterophil to lymphocyte ratio decreased both at 21 d (P = 0.047) and 35 d (P = 0.001). Superoxide dismutase and glutathione peroxidase activities increased when dietary Cu increased to 150 mg/kg (P < 0.01). Liver Cu at 35 d increased linearly with the dose of Cu in the diet (P = 0.0001). Selected bacteria were enumerated in the digesta to ascertain if Cu super-dosing affected their population in any way in the absence of any enteric challenge. Escherichia coli and total Salmonella numbers decreased (P = 0.0001), and total Lactobacillus increased (P = 0.0001) proportionately with dietary Cu. Interleukin-6 and tumour necrosis factor-α gene expression increased linearly (P = 0.0001) as Cu in the diet increased though the response plateaued at 112.5 mg/kg. It was concluded from the present experiment that during conditions of impending HS, dietary supplementation of 112.5 to 150 mg Cu/kg diet as Cu-P may be a novel strategy to alleviate the negative effects of HS without involving any apparent risk of Cu toxicity. Hindawi 2023-09-13 /pmc/articles/PMC10511294/ /pubmed/37736129 http://dx.doi.org/10.1155/2023/3559234 Text en Copyright © 2023 Sudipto Haldar et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Haldar, Sudipto
Dhara, Amrita Kumar
Sihi Arora, Sayantani
Verma Mukherjee, Arpana
Nayak, Arup
Copper Super-Dosing Improves Performance of Heat-Stressed Broiler Chickens through Modulation of Expression of Proinflammatory Cytokine Genes
title Copper Super-Dosing Improves Performance of Heat-Stressed Broiler Chickens through Modulation of Expression of Proinflammatory Cytokine Genes
title_full Copper Super-Dosing Improves Performance of Heat-Stressed Broiler Chickens through Modulation of Expression of Proinflammatory Cytokine Genes
title_fullStr Copper Super-Dosing Improves Performance of Heat-Stressed Broiler Chickens through Modulation of Expression of Proinflammatory Cytokine Genes
title_full_unstemmed Copper Super-Dosing Improves Performance of Heat-Stressed Broiler Chickens through Modulation of Expression of Proinflammatory Cytokine Genes
title_short Copper Super-Dosing Improves Performance of Heat-Stressed Broiler Chickens through Modulation of Expression of Proinflammatory Cytokine Genes
title_sort copper super-dosing improves performance of heat-stressed broiler chickens through modulation of expression of proinflammatory cytokine genes
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511294/
https://www.ncbi.nlm.nih.gov/pubmed/37736129
http://dx.doi.org/10.1155/2023/3559234
work_keys_str_mv AT haldarsudipto coppersuperdosingimprovesperformanceofheatstressedbroilerchickensthroughmodulationofexpressionofproinflammatorycytokinegenes
AT dharaamritakumar coppersuperdosingimprovesperformanceofheatstressedbroilerchickensthroughmodulationofexpressionofproinflammatorycytokinegenes
AT sihiarorasayantani coppersuperdosingimprovesperformanceofheatstressedbroilerchickensthroughmodulationofexpressionofproinflammatorycytokinegenes
AT vermamukherjeearpana coppersuperdosingimprovesperformanceofheatstressedbroilerchickensthroughmodulationofexpressionofproinflammatorycytokinegenes
AT nayakarup coppersuperdosingimprovesperformanceofheatstressedbroilerchickensthroughmodulationofexpressionofproinflammatorycytokinegenes