Cargando…

AI-enabled organoids: Construction, analysis, and application

Organoids, miniature and simplified in vitro model systems that mimic the structure and function of organs, have attracted considerable interest due to their promising applications in disease modeling, drug screening, personalized medicine, and tissue engineering. Despite the substantial success in...

Descripción completa

Detalles Bibliográficos
Autores principales: Bai, Long, Wu, Yan, Li, Guangfeng, Zhang, Wencai, Zhang, Hao, Su, Jiacan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: KeAi Publishing 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511344/
https://www.ncbi.nlm.nih.gov/pubmed/37746662
http://dx.doi.org/10.1016/j.bioactmat.2023.09.005
Descripción
Sumario:Organoids, miniature and simplified in vitro model systems that mimic the structure and function of organs, have attracted considerable interest due to their promising applications in disease modeling, drug screening, personalized medicine, and tissue engineering. Despite the substantial success in cultivating physiologically relevant organoids, challenges remain concerning the complexities of their assembly and the difficulties associated with data analysis. The advent of AI-Enabled Organoids, which interfaces with artificial intelligence (AI), holds the potential to revolutionize the field by offering novel insights and methodologies that can expedite the development and clinical application of organoids. This review succinctly delineates the fundamental concepts and mechanisms underlying AI-Enabled Organoids, summarizing the prospective applications on rapid screening of construction strategies, cost-effective extraction of multiscale image features, streamlined analysis of multi-omics data, and precise preclinical evaluation and application. We also explore the challenges and limitations of interfacing organoids with AI, and discuss the future direction of the field. Taken together, the AI-Enabled Organoids hold significant promise for advancing our understanding of organ development and disease progression, ultimately laying the groundwork for clinical application.