Cargando…
Reproducibility of a combined artificial intelligence and optimal-surface graph-cut method to automate bronchial parameter extraction
OBJECTIVES: Computed tomography (CT)–based bronchial parameters correlate with disease status. Segmentation and measurement of the bronchial lumen and walls usually require significant manpower. We evaluate the reproducibility of a deep learning and optimal-surface graph-cut method to automatically...
Autores principales: | Dudurych, Ivan, Garcia-Uceda, Antonio, Petersen, Jens, Du, Yihui, Vliegenthart, Rozemarijn, de Bruijne, Marleen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511366/ https://www.ncbi.nlm.nih.gov/pubmed/37071168 http://dx.doi.org/10.1007/s00330-023-09615-y |
Ejemplares similares
-
Creating a training set for artificial intelligence from initial segmentations of airways
por: Dudurych, Ivan, et al.
Publicado: (2021) -
Bronchial wall parameters on CT in healthy never-smoking, smoking, COPD, and asthma populations: a systematic review and meta-analysis
por: Dudurych, Ivan, et al.
Publicado: (2022) -
Improved precision of noise estimation in CT with a volume-based approach
por: Wisselink, Hendrik Joost, et al.
Publicado: (2021) -
Automated Inline Analysis of Myocardial Perfusion MRI with Deep Learning
por: Xue, Hui, et al.
Publicado: (2020) -
106 Neurosurgery Resident Feedback through Artificial-Intelligence
por: Porras, Jose Luis, et al.
Publicado: (2023)