Cargando…
Efficacy of copper nanoparticles encapsulated in soya lecithin liposomes in treating breast cancer cells (MCF-7) in vitro
Cancer is one of the leading causes of death, which has attracted the attention of the scientific world to the search for efficient methods for treatment. With the great development and regeneration of nanotechnology over the last 25 years, various nanoparticles in different structures, shapes and c...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511430/ https://www.ncbi.nlm.nih.gov/pubmed/37730859 http://dx.doi.org/10.1038/s41598-023-42514-2 |
Sumario: | Cancer is one of the leading causes of death, which has attracted the attention of the scientific world to the search for efficient methods for treatment. With the great development and regeneration of nanotechnology over the last 25 years, various nanoparticles in different structures, shapes and composites provide good potential for cancer therapy. There are several drugs approved by FDA used in breast cancer treatment like Cyclophosphamide, Doxorubicin Hydrochloride, Femara, Herceptin, etc. Each has several side effects as well as treatment, which limits the use of drugs due to heart failure, pulmonary dysfunction, or immunodeficiency. Recently, such side effects are greatly reduced by using innovative delivery techniques. Some drugs have been approved for use in cancer treatment under the concept of drug delivery, such as Doxil (liposomal loaded doxorubicin). The purpose of this study is to investigate the effect of copper nanoparticles (CuNPs) as a drug model for cancer treatment, either in their free form or encapsulated in Soy lecithin liposomes (SLP) from plant origin as a cheap source of lipids. CuNPs were prepared by the chemical reduction method and loaded onto SLP through the thin film hydration method. The drug model Cu/SLP was successfully combined. The characteristics of the free CuNPs, liposomes, and the combined form, zeta potential, size distribution, drug encapsulation efficiency (EE%), drug release profile, Fourier transform infrared (FTIR), and transmission electron microscopy (TEM), were checked, followed by an in vitro study on the breast cancer cell line Mcf-7 as a model for cytotoxicity evaluation. The optimal Cu/SLP had a particle mean size of 81.59 ± 14.93 nm, a negative zeta potential of − 50.7 ± 4.34 mV, loaded CuNPs showed an EE% of 78.9%, a drug release profile for about 50% of the drug was released after 6 h, and FTIR analysis was recorded. The cytotoxicity assay showed that the IC(50) of Cu/SLP is smaller than that of free CuNPs. These results give clear evidence of the efficacy of using the combined Cu/SLP rather than CuNPs alone as a model drug carrier prepared from plant origin against cancer, both medically and economically. |
---|