Cargando…

Affine transformations accelerate the training of physics-informed neural networks of a one-dimensional consolidation problem

Physics-informed neural networks (PINNs) leverage data and knowledge about a problem. They provide a nonnumerical pathway to solving partial differential equations by expressing the field solution as an artificial neural network. This approach has been applied successfully to various types of differ...

Descripción completa

Detalles Bibliográficos
Autores principales: Mandl, Luis, Mielke, André, Seyedpour, Seyed Morteza, Ricken, Tim
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511457/
https://www.ncbi.nlm.nih.gov/pubmed/37730743
http://dx.doi.org/10.1038/s41598-023-42141-x
Descripción
Sumario:Physics-informed neural networks (PINNs) leverage data and knowledge about a problem. They provide a nonnumerical pathway to solving partial differential equations by expressing the field solution as an artificial neural network. This approach has been applied successfully to various types of differential equations. A major area of research on PINNs is the application to coupled partial differential equations in particular, and a general breakthrough is still lacking. In coupled equations, the optimization operates in a critical conflict between boundary conditions and the underlying equations, which often requires either many iterations or complex schemes to avoid trivial solutions and to achieve convergence. We provide empirical evidence for the mitigation of bad initial conditioning in PINNs for solving one-dimensional consolidation problems of porous media through the introduction of affine transformations after the classical output layer of artificial neural network architectures, effectively accelerating the training process. These affine physics-informed neural networks (AfPINNs) then produce nontrivial and accurate field solutions even in parameter spaces with diverging orders of magnitude. On average, AfPINNs show the ability to improve the [Formula: see text] relative error by [Formula: see text] after 25,000 epochs for a one-dimensional consolidation problem based on Biot’s theory, and an average improvement by [Formula: see text] with a transfer approach to the theory of porous media.