Cargando…
Affine transformations accelerate the training of physics-informed neural networks of a one-dimensional consolidation problem
Physics-informed neural networks (PINNs) leverage data and knowledge about a problem. They provide a nonnumerical pathway to solving partial differential equations by expressing the field solution as an artificial neural network. This approach has been applied successfully to various types of differ...
Autores principales: | Mandl, Luis, Mielke, André, Seyedpour, Seyed Morteza, Ricken, Tim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511457/ https://www.ncbi.nlm.nih.gov/pubmed/37730743 http://dx.doi.org/10.1038/s41598-023-42141-x |
Ejemplares similares
-
The effect of Caspian Sea water on mechanical properties and durability of concrete containing rice husk ash, nano [Formula: see text] , and nano [Formula: see text]
por: Arasteh-Khoshbin, Omolbanin, et al.
Publicado: (2022) -
Priorities for Consolidation of CERN Accelerators
por: Bonnal, P, et al.
Publicado: (2004) -
Consolidation of the CERN Accelerator Build Infrastructure
por: Jalilova, Laman
Publicado: (2021) -
Consolidation of the CERN Accelerator Build Infrastructure
por: Jalilova, Laman
Publicado: (2021) -
Application of Magnetic Resonance Imaging in Liver Biomechanics: A Systematic Review
por: Seyedpour, Seyed M., et al.
Publicado: (2021)