Cargando…
Machine learning developed a programmed cell death signature for predicting prognosis and immunotherapy benefits in lung adenocarcinoma
BACKGROUND: Lung cancer is the leading cause of cancer-related deaths worldwide with poor prognosis. Programmed cell death (PCD) plays a crucial function in tumor progression and immunotherapy response in lung adenocarcinoma (LUAD). METHODS: Integrative machine learning procedure including 10 method...
Autores principales: | Ding, Dongxiao, Wang, Liangbin, Zhang, Yunqiang, Shi, Ke, Shen, Yaxing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Neoplasia Press
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511492/ https://www.ncbi.nlm.nih.gov/pubmed/37722290 http://dx.doi.org/10.1016/j.tranon.2023.101784 |
Ejemplares similares
-
Identification of novel gene signature for lung adenocarcinoma by machine learning to predict immunotherapy and prognosis
por: Shu, Jianfeng, et al.
Publicado: (2023) -
A programmed cell death-related model based on machine learning for predicting prognosis and immunotherapy responses in patients with lung adenocarcinoma
por: Zhang, Yi, et al.
Publicado: (2023) -
Predictive mutation signature of immunotherapy benefits in NSCLC based on machine learning algorithms
por: Liu, Zhichao, et al.
Publicado: (2022) -
Comprehensive analysis of the immunogenic cell death-related signature for predicting prognosis and immunotherapy efficiency in patients with lung adenocarcinoma
por: Cui, Yingshu, et al.
Publicado: (2023) -
The integrated single-cell analysis developed an immunogenic cell death signature to predict lung adenocarcinoma prognosis and immunotherapy
por: Zhang, Pengpeng, et al.
Publicado: (2023)