Cargando…
Convolutional neural networks for mode on-demand high finesse optical resonator design
We demonstrate the use of machine learning through convolutional neural networks to solve inverse design problems of optical resonator engineering. The neural network finds a harmonic modulation of a spherical mirror to generate a resonator mode with a given target topology (“mode on-demand”). The p...
Autores principales: | Karpov, Denis V., Kurdiumov, Sergei, Horak, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511533/ https://www.ncbi.nlm.nih.gov/pubmed/37730758 http://dx.doi.org/10.1038/s41598-023-42223-w |
Ejemplares similares
-
Water-walled microfluidics for high-optical finesse cavities
por: Maayani, Shai, et al.
Publicado: (2016) -
Finesse and Fire, Creativity and Combustion
por: Breedlove, Byron
Publicado: (2019) -
On-Chip High-Finesse Fabry-Perot Microcavities for Optical Sensing and Quantum Information
por: Bitarafan, Mohammad H., et al.
Publicado: (2017) -
Renal proximal tubule cells: power and finesse
por: Fuchs, Michaela A.A., et al.
Publicado: (2023) -
Diamond Structures for Tuning of the Finesse Coefficient of Photonic Devices
por: Kosowska, Monika, et al.
Publicado: (2022)