Cargando…
Predicting ‘Brainage’ in late childhood to adolescence (6-17yrs) using structural MRI, morphometric similarity, and machine learning
Brain development is regularly studied using structural MRI. Recently, studies have used a combination of statistical learning and large-scale imaging databases of healthy children to predict an individual’s age from structural MRI. This data-driven, predicted ‘Brainage’ typically differs from the s...
Autores principales: | Griffiths-King, Daniel, Wood, Amanda G., Novak, Jan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511546/ https://www.ncbi.nlm.nih.gov/pubmed/37730747 http://dx.doi.org/10.1038/s41598-023-42414-5 |
Ejemplares similares
-
Predicting ‘Brainage’ in the Developmental Period using Structural MRI, Morphometric Similarity, and Machine Learning
por: Griffiths-King, Daniel J., et al.
Publicado: (2023) -
YRS Survey
por: Van Cauter, Sofie, et al.
Publicado: (2016) -
Advanced BrainAGE in older adults with type 2 diabetes mellitus
por: Franke, Katja, et al.
Publicado: (2013) -
MRI BrainAGE demonstrates increased brain aging in systemic lupus erythematosus patients
por: Kuchcinski, Grégory, et al.
Publicado: (2023) -
BrainAGE in Mild Cognitive Impaired Patients: Predicting the Conversion to Alzheimer’s Disease
por: Gaser, Christian, et al.
Publicado: (2013)