Cargando…
Detection and quantification of breast arterial calcifications on mammograms: a deep learning approach
OBJECTIVE: Breast arterial calcifications (BAC) are a sex-specific cardiovascular disease biomarker that might improve cardiovascular risk stratification in women. We implemented a deep convolutional neural network for automatic BAC detection and quantification. METHODS: In this retrospective study,...
Autores principales: | Mobini, Nazanin, Codari, Marina, Riva, Francesca, Ienco, Maria Giovanna, Capra, Davide, Cozzi, Andrea, Carriero, Serena, Spinelli, Diana, Trimboli, Rubina Manuela, Baselli, Giuseppe, Sardanelli, Francesco |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511622/ https://www.ncbi.nlm.nih.gov/pubmed/37160426 http://dx.doi.org/10.1007/s00330-023-09668-z |
Ejemplares similares
-
Breast arterial calcifications as a biomarker of cardiovascular risk: radiologists’ awareness, reporting, and action. A survey among the EUSOBI members
por: Trimboli, Rubina Manuela, et al.
Publicado: (2020) -
Analysis of mammograms using artificial intelligence to predict response to neoadjuvant chemotherapy in breast cancer patients: proof of concept
por: Skarping, I., et al.
Publicado: (2021) -
Automated quantification of COVID-19 severity and progression using chest CT images
por: Pu, Jiantao, et al.
Publicado: (2020) -
Computed tomography semi-automated lung volume quantification in SARS-CoV-2-related pneumonia
por: Ippolito, Davide, et al.
Publicado: (2020) -
Deep learning for standardized, MRI-based quantification of subcutaneous and subfascial tissue volume for patients with lipedema and lymphedema
por: Nowak, Sebastian, et al.
Publicado: (2022)