Cargando…
Recent advances in mass spectrometry-based proteomics and metabolomics in chronic rhinosinusitis with nasal polyps
Chronic rhinosinusitis with nasal polyps (CRSwNP) is a complex and heterogeneous disease, typically diagnosed through endoscopy and computed tomography and treated with glucocorticoid or surgery. There is an urgent need to develop molecular-level diagnostic or prognostic tools to better understand t...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511644/ https://www.ncbi.nlm.nih.gov/pubmed/37744372 http://dx.doi.org/10.3389/fimmu.2023.1267194 |
Sumario: | Chronic rhinosinusitis with nasal polyps (CRSwNP) is a complex and heterogeneous disease, typically diagnosed through endoscopy and computed tomography and treated with glucocorticoid or surgery. There is an urgent need to develop molecular-level diagnostic or prognostic tools to better understand the pathophysiology of CRSwNP. Proteomics and metabolomics, emerging fields, offer significant potential in elucidating the mechanisms underlying CRSwNP. Mass spectrometry, a powerful and sensitive tool for trace substance detection, is broadly applied for proteomics and metabolomics analysis in CRSwNP research. While previous literature has summarized the advancement of mass spectrometry-based CRSwNP proteomics from 2004 to 2018, recent years have seen new advances in this field, particularly about non-invasive samples and exosomes. Furthermore, mass spectrometry-based CRSwNP metabolomics research has opened new avenues for inquiry. Therefore, we present a comprehensive review of mass spectrometry-based proteomics and metabolomics studies on CRSwNP conducted between 2019 and 2022. Specifically, we highlight protein and metabolic biomarkers that have been utilized as diagnostic or prognostic markers for CRSwNP. Lastly, we conclude with potential directions for future mass spectrometry-based omics studies of CRSwNP. |
---|