Cargando…
Cluster analysis driven by unsupervised latent feature learning of medications to identify novel pharmacophenotypes of critically ill patients
Unsupervised clustering of intensive care unit (ICU) medications may identify unique medication clusters (i.e., pharmacophenotypes) in critically ill adults. We performed an unsupervised analysis with Restricted Boltzmann Machine of 991 medications profiles of patients managed in the ICU to explore...
Autores principales: | Sikora, Andrea, Jeong, Hayoung, Yu, Mengyun, Chen, Xianyan, Murray, Brian, Kamaleswaran, Rishikesan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511715/ https://www.ncbi.nlm.nih.gov/pubmed/37730817 http://dx.doi.org/10.1038/s41598-023-42657-2 |
Ejemplares similares
-
Pharmacophenotype identification of intensive care unit medications using unsupervised cluster analysis of the ICURx common data model
por: Sikora, Andrea, et al.
Publicado: (2023) -
Commentary: ‘Critical illness subclasses: all roads lead to Rome’
por: Atreya, Mihir R., et al.
Publicado: (2022) -
Features derived from blood pressure and intracranial pressure predict elevated intracranial pressure events in critically ill children
por: Ackerman, Kassi, et al.
Publicado: (2022) -
Machine learning vs. traditional regression analysis for fluid overload prediction in the ICU
por: Sikora, Andrea, et al.
Publicado: (2023) -
Comparative analysis between convolutional neural network learned and engineered features: A case study on cardiac arrhythmia detection
por: Mahajan, Ruhi, et al.
Publicado: (2020)