Cargando…
Growth and rupture of an intracranial aneurysm: the role of wall aneurysmal enhancement and CD68+
INTRODUCTION: Intracranial aneurysms occur in 3%–5% of the general population. While the precise biological mechanisms underlying the formation, growth, and sudden rupture of intracranial aneurysms remain partially unknown, recent research has shed light on the potential role of inflammation in aneu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511771/ https://www.ncbi.nlm.nih.gov/pubmed/37744724 http://dx.doi.org/10.3389/fsurg.2023.1228955 |
_version_ | 1785108215646650368 |
---|---|
author | Cannizzaro, Delia Zaed, Ismail Olei, Simone Fernandes, Bethania Peschillo, Simone Milani, Davide Cardia, Andrea |
author_facet | Cannizzaro, Delia Zaed, Ismail Olei, Simone Fernandes, Bethania Peschillo, Simone Milani, Davide Cardia, Andrea |
author_sort | Cannizzaro, Delia |
collection | PubMed |
description | INTRODUCTION: Intracranial aneurysms occur in 3%–5% of the general population. While the precise biological mechanisms underlying the formation, growth, and sudden rupture of intracranial aneurysms remain partially unknown, recent research has shed light on the potential role of inflammation in aneurysm development and rupture. In addition, there are ongoing investigations exploring the feasibility of employing new drug therapies for controlling the risk factors associated with aneurysms. CD68, a glycosylated glycoprotein and the human homolog of macrosialin, is prominently expressed in monocyte/macrophages within inflamed tissues and has shown potential application in oncology. An observational study was conducted with the aim of comparing the histological characteristics of aneurysm walls with preoperative MRI scans, specifically focusing on CD68 activity. METHOD: An observational pilot study was conducted to investigate the histological characteristics of the aneurysm wall that could be potentially associated with aneurysm growth and rupture. A total of 22 patients diagnosed with ruptured and unruptured intracranial aneurysms who had undergone conventional clipping between January 2017 and December 2022 were included in the study. RESULTS: A histopathological analysis of the aneurysm wall was performed in all patients, particularly focusing on the presence of CD68. A preoperative MRI with gadolinium was conducted in 10 patients with unruptured aneurysms and six patients with ruptured aneurysms. An emergency clipping was performed in the remaining six patients. The results showed that CD68 positivity and wall enhancement were significantly associated with intracranial aneurysm wall degeneration, growth, and rupture. CONCLUSION: The histological and radiological inflammatory findings observed in the wall of cerebral aneurysms, as well as the CD68 positivity, are significantly associated with the risk of intracranial aneurysm growth and rupture. This study highlights the crucial importance of considering clinical and medical data when making treatment decisions for intracranial aneurysms. Furthermore, it emphasizes the relevance of evaluating wall enhancement in MRI scans as part of the diagnostic and prognostic process. |
format | Online Article Text |
id | pubmed-10511771 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-105117712023-09-22 Growth and rupture of an intracranial aneurysm: the role of wall aneurysmal enhancement and CD68+ Cannizzaro, Delia Zaed, Ismail Olei, Simone Fernandes, Bethania Peschillo, Simone Milani, Davide Cardia, Andrea Front Surg Surgery INTRODUCTION: Intracranial aneurysms occur in 3%–5% of the general population. While the precise biological mechanisms underlying the formation, growth, and sudden rupture of intracranial aneurysms remain partially unknown, recent research has shed light on the potential role of inflammation in aneurysm development and rupture. In addition, there are ongoing investigations exploring the feasibility of employing new drug therapies for controlling the risk factors associated with aneurysms. CD68, a glycosylated glycoprotein and the human homolog of macrosialin, is prominently expressed in monocyte/macrophages within inflamed tissues and has shown potential application in oncology. An observational study was conducted with the aim of comparing the histological characteristics of aneurysm walls with preoperative MRI scans, specifically focusing on CD68 activity. METHOD: An observational pilot study was conducted to investigate the histological characteristics of the aneurysm wall that could be potentially associated with aneurysm growth and rupture. A total of 22 patients diagnosed with ruptured and unruptured intracranial aneurysms who had undergone conventional clipping between January 2017 and December 2022 were included in the study. RESULTS: A histopathological analysis of the aneurysm wall was performed in all patients, particularly focusing on the presence of CD68. A preoperative MRI with gadolinium was conducted in 10 patients with unruptured aneurysms and six patients with ruptured aneurysms. An emergency clipping was performed in the remaining six patients. The results showed that CD68 positivity and wall enhancement were significantly associated with intracranial aneurysm wall degeneration, growth, and rupture. CONCLUSION: The histological and radiological inflammatory findings observed in the wall of cerebral aneurysms, as well as the CD68 positivity, are significantly associated with the risk of intracranial aneurysm growth and rupture. This study highlights the crucial importance of considering clinical and medical data when making treatment decisions for intracranial aneurysms. Furthermore, it emphasizes the relevance of evaluating wall enhancement in MRI scans as part of the diagnostic and prognostic process. Frontiers Media S.A. 2023-09-06 /pmc/articles/PMC10511771/ /pubmed/37744724 http://dx.doi.org/10.3389/fsurg.2023.1228955 Text en © 2023 Cannizzaro, Zaed, Olei, Fernandes, Peschillo, Milani and Cardia. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY) (https://creativecommons.org/licenses/by/4.0/) . The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Surgery Cannizzaro, Delia Zaed, Ismail Olei, Simone Fernandes, Bethania Peschillo, Simone Milani, Davide Cardia, Andrea Growth and rupture of an intracranial aneurysm: the role of wall aneurysmal enhancement and CD68+ |
title | Growth and rupture of an intracranial aneurysm: the role of wall aneurysmal enhancement and CD68+ |
title_full | Growth and rupture of an intracranial aneurysm: the role of wall aneurysmal enhancement and CD68+ |
title_fullStr | Growth and rupture of an intracranial aneurysm: the role of wall aneurysmal enhancement and CD68+ |
title_full_unstemmed | Growth and rupture of an intracranial aneurysm: the role of wall aneurysmal enhancement and CD68+ |
title_short | Growth and rupture of an intracranial aneurysm: the role of wall aneurysmal enhancement and CD68+ |
title_sort | growth and rupture of an intracranial aneurysm: the role of wall aneurysmal enhancement and cd68+ |
topic | Surgery |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511771/ https://www.ncbi.nlm.nih.gov/pubmed/37744724 http://dx.doi.org/10.3389/fsurg.2023.1228955 |
work_keys_str_mv | AT cannizzarodelia growthandruptureofanintracranialaneurysmtheroleofwallaneurysmalenhancementandcd68 AT zaedismail growthandruptureofanintracranialaneurysmtheroleofwallaneurysmalenhancementandcd68 AT oleisimone growthandruptureofanintracranialaneurysmtheroleofwallaneurysmalenhancementandcd68 AT fernandesbethania growthandruptureofanintracranialaneurysmtheroleofwallaneurysmalenhancementandcd68 AT peschillosimone growthandruptureofanintracranialaneurysmtheroleofwallaneurysmalenhancementandcd68 AT milanidavide growthandruptureofanintracranialaneurysmtheroleofwallaneurysmalenhancementandcd68 AT cardiaandrea growthandruptureofanintracranialaneurysmtheroleofwallaneurysmalenhancementandcd68 |