Cargando…
Machine learning identifies a COVID-19-specific phenotype in university students using a mental health app
BACKGROUND: Advances in smartphone technology have allowed people to access mental healthcare via digital apps from wherever and whenever they choose. University students experience a high burden of mental health concerns. Although these apps improve mental health symptoms, user engagement has remai...
Autores principales: | Shvetcov, Artur, Whitton, Alexis, Kasturi, Suranga, Zheng, Wu-Yi, Beames, Joanne, Ibrahim, Omar, Han, Jin, Hoon, Leonard, Mouzakis, Kon, Gupta, Sunil, Venkatesh, Svetha, Christensen, Helen, Newby, Jill |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511781/ https://www.ncbi.nlm.nih.gov/pubmed/37746637 http://dx.doi.org/10.1016/j.invent.2023.100666 |
Ejemplares similares
-
Protocol for a bandit-based response adaptive trial to evaluate the effectiveness of brief self-guided digital interventions for reducing psychological distress in university students: the Vibe Up study
por: Huckvale, Kit, et al.
Publicado: (2023) -
Intelligent Sensing to Inform and Learn (InSTIL): A Scalable and Governance-Aware Platform for Universal, Smartphone-Based Digital Phenotyping for Research and Clinical Applications
por: Barnett, Scott, et al.
Publicado: (2019) -
Systematic evaluation of content and quality of English and German pain apps in European app stores
por: Terhorst, Yannik, et al.
Publicado: (2021) -
Associations between symptoms of problematic smartphone, Facebook, WhatsApp, and Instagram use: An item-level exploratory graph analysis perspective
por: Rozgonjuk, Dmitri, et al.
Publicado: (2020) -
Online mindfulness-enhanced cognitive behavioural therapy for anxiety and depression: Outcomes of a pilot trial
por: Kladnitski, Natalie, et al.
Publicado: (2018)