Cargando…
Non-negative tensor factorization workflow for time series biomedical data
Non-negative tensor factorization (NTF) enables the extraction of a small number of latent components from high-dimensional biomedical data. However, NTF requires many steps, which is a hurdle to implementation. Here, we provide a protocol for TensorLyCV, an easy to run and reproducible NTF analysis...
Autores principales: | Tsuyuzaki, Koki, Yoshida, Naoki, Ishikawa, Tetsuo, Goshima, Yuki, Kawakami, Eiryo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511860/ https://www.ncbi.nlm.nih.gov/pubmed/37421614 http://dx.doi.org/10.1016/j.xpro.2023.102318 |
Ejemplares similares
-
Detecting time-evolving phenotypic components of adverse reactions against BNT162b2 SARS-CoV-2 vaccine via non-negative tensor factorization
por: Ikeda, Kei, et al.
Publicado: (2022) -
Protocol to acquire time series data on adverse reactions following vaccination using a smartphone or web-based platform
por: Yamao, Yasuo, et al.
Publicado: (2023) -
WormTensor: a clustering method for time-series whole-brain activity data from C. elegans
por: Tsuyuzaki, Koki, et al.
Publicado: (2023) -
Approaches and Criteria for Provenance in Biomedical Data Sets and Workflows: Protocol for a Scoping Review
por: Gierend, Kerstin, et al.
Publicado: (2021) -
Computational workflow for integrative analyses of DNA replication timing, epigenomic, and transcriptomic data
por: Ji, Fei, et al.
Publicado: (2022)