Cargando…
Velocity range-based reward shaping technique for effective map-less navigation with LiDAR sensor and deep reinforcement learning
In recent years, sensor components similar to human sensory functions have been rapidly developed in the hardware field, enabling the acquisition of information at a level beyond that of humans, and in the software field, artificial intelligence technology has been utilized to enable cognitive abili...
Autores principales: | Lee, HyeokSoo, Jeong, Jongpil |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512054/ https://www.ncbi.nlm.nih.gov/pubmed/37744086 http://dx.doi.org/10.3389/fnbot.2023.1210442 |
Ejemplares similares
-
LiDAR Intensity Completion: Fully Exploiting the Message from LiDAR Sensors
por: Dai, Weichen, et al.
Publicado: (2022) -
LiDAR-Only Crop Navigation for Symmetrical Robot
por: Guyonneau, Rémy, et al.
Publicado: (2022) -
Reinforcement and Curriculum Learning for Off-Road Navigation of an UGV with a 3D LiDAR
por: Sánchez, Manuel, et al.
Publicado: (2023) -
Robust Scan Registration for Navigation in Forest Environment Using Low-Resolution LiDAR Sensors
por: Gupta, Himanshu, et al.
Publicado: (2023) -
Influence of Waveform Characteristics on LiDAR Ranging Accuracy and Precision
por: Li, Xiaolu, et al.
Publicado: (2018)