Cargando…
Bidirectional connectivity alterations in schizophrenia: a multivariate, machine-learning approach
OBJECTIVE: It is well known that altered functional connectivity is a robust neuroimaging marker of schizophrenia. However, there is inconsistency in the direction of alterations, i.e., increased or decreased connectivity. In this study, we aimed to determine the direction of the connectivity altera...
Autores principales: | Kim, Minhoe, Seo, Ji Won, Yun, Seokho, Kim, Minchul |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10512460/ https://www.ncbi.nlm.nih.gov/pubmed/37743998 http://dx.doi.org/10.3389/fpsyt.2023.1232015 |
Ejemplares similares
-
Multivariate prediction of long COVID headache in adolescents using gray matter structural MRI features
por: Kim, Minhoe, et al.
Publicado: (2023) -
Using Multivariate Machine Learning Methods and Structural MRI to Classify Childhood Onset Schizophrenia and Healthy Controls
por: Greenstein, Deanna, et al.
Publicado: (2012) -
Altered Functional Connectivity of Striatum Based on the Integrated Connectivity Model in First-Episode Schizophrenia
por: Zhang, Bei, et al.
Publicado: (2019) -
Prognostic Utility of Multivariate Morphometry in Schizophrenia
por: Li, Mingli, et al.
Publicado: (2019) -
Machine Learning-Based Electroencephalographic Phenotypes of Schizophrenia and Major Depressive Disorder
por: Jang, Kuk-In, et al.
Publicado: (2021)